A050793
Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1A050791), and increasing values of y in case of ties. Sequence gives values of y.
10, 94, 144, 235, 438, 729, 1537, 1738, 1897, 2304, 3518, 4528, 5625, 8343, 9036, 9735, 11664, 11468, 19386, 21609, 31180, 35442, 36864, 33412, 38782, 35385, 41167, 44521, 51762, 59049, 50920, 72629, 76903, 83692, 67402, 80020, 90000
Offset: 1
Keywords
Examples
For the 10th term where y is 2304, 577^3 + 2304^3 = 2316^3 + 1.
References
- Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
Links
- Lewis Mammel, Table of n, a(n) for n = 1..368
- Eric Weisstein's World of Mathematics, Diophantine Equation - 3rd Powers
Extensions
More terms from Michel ten Voorde; no more with z<8192.
Extended through 44521 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007
Comments