cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050794 Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Arrange solutions by increasing values of z (see A050791). Sequence gives values of x^3 + y^3 = z^3 + 1. For corresponding values of x, y, z see A050792, A050793, A050791 respectively.

Original entry on oeis.org

1729, 1092728, 3375001, 15438250, 121287376, 401947273, 3680797185, 6352182209, 7856862273, 12422690497, 73244501505, 145697644729, 179406144001, 648787169394, 938601300672, 985966166178, 1594232306569
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Note that a(1)=1729 is the Hardy-Ramanujan number. - Omar E. Pol, Jan 28 2009

Examples

			577^3 + 2304^3 = 2316^3 + 1 = 12422690497.
		

References

  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
  • David Wells, "Curious and Interesting Numbers", Revised Ed. 1997, Penguin Books, On number "1729", p. 153.

Crossrefs

Extensions

Extended through 1594232306569 by Jud McCranie, Dec 25 2000

A050791 Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Sequence gives values of z in monotonic increasing order.

Original entry on oeis.org

12, 103, 150, 249, 495, 738, 1544, 1852, 1988, 2316, 4184, 5262, 5640, 8657, 9791, 9953, 11682, 14258, 21279, 21630, 31615, 36620, 36888, 38599, 38823, 40362, 41485, 47584, 57978, 59076, 63086, 73967, 79273, 83711, 83802, 86166, 90030
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

Numbers n such that n^3+1 is expressible as the sum of two nonzero cubes (both greater than 1).
Values of z associated with A050794.
Sequence is infinite. One subsequence is (from x = 1 + 9 m^3, y = 9 m^4, z = 3*m*(3*m^3 + 1), x^3 + y^3 = z^3 + 1): z(m) = 3*m*(3*m^3 + 1) = {12, 150, 738, 2316, 5640, 11682, 21630, 36888, 59076, 90030, ...} = a (1, 3, 6, 10, 13, 17, 20, 23, 30, 37, ...). - Zak Seidov, Sep 16 2013
Numbers n such that n^3+1 is a member of A001235. - Altug Alkan, May 09 2016

Examples

			12 is a term because 10^3 + 9^3 = 12^3 + 1 (= 1729).
2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1.
		

References

  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

Programs

  • Mathematica
    r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[A050791, z]]; z++]; A050791 (* Jean-François Alcover, Dec 27 2011 *)
  • PARI
    is(n)=if(n<2,return(0));my(c3=n^3);for(a=2,sqrtnint(c3-5,3),if(ispower(c3-1-a^3,3),return(1)));0 \\ Charles R Greathouse IV, Oct 26 2014
    
  • PARI
    T=thueinit('x^3+1); is(n)=n>8&&#select(v->min(v[1], v[2])>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014

Extensions

More terms from Michel ten Voorde
Extended through 47584 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007

A050792 Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Arrange solutions by increasing values of z (see A050791). Sequence gives values of x.

Original entry on oeis.org

9, 64, 73, 135, 334, 244, 368, 1033, 1010, 577, 3097, 3753, 1126, 4083, 5856, 3987, 1945, 11161, 13294, 3088, 10876, 16617, 4609, 27238, 5700, 27784, 11767, 26914, 38305, 6562, 49193, 27835, 35131, 7364, 65601, 50313, 9001, 11980, 39892, 20848
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Comments

"One of the simplest cubic Diophantine equations is known to have an infinite number of solutions (Lehmer, 1956; Payne and Vaserstein, 1991). Any number of solutions to the equation x^3 + y^3 + z^3 = 1 can be produced through the use of the algebraic identity (9t^3+1)^3 + (9t^4)^3 + (-9t^4-3t)^3 = 1 by substituting in values of t. ...
"Although these are certainly solutions, the identity generates only one family of solutions. Other solutions such as (94, 64, -103), (235, 135, -249), (438, 334, -495), ... can be found. What is not known is if it is possible to parameterize all solutions for this equation. Put another way, are there an infinite number of families of solutions? Probable yes, but that too remains to be shown." [Herkommer]
Values of x associated with A050794.

Examples

			577^3 + 2304^3 = 2316^3 + 1.
		

References

  • Mark A. Herkommer, Number Theory, A Programmer's Guide, McGraw-Hill, NY, 1999, page 370.
  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

Extensions

More terms from Michel ten Voorde.
Extended through 26914 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007

A141326 Subsequence of 'Fermat near misses' which is generated by a simple formula based on the cubic binomial expansion along with formulas for the corresponding terms in the expression, x^3 + y^3 = z^3 + 1.

Original entry on oeis.org

12, 150, 738, 2316, 5640, 11682, 21630, 36888, 59076, 90030, 131802, 186660, 257088, 345786, 455670, 589872, 751740, 944838, 1172946, 1440060, 1750392, 2108370, 2518638, 2986056, 3515700, 4112862, 4783050, 5531988, 6365616, 7290090, 8311782, 9437280, 10673388
Offset: 1

Views

Author

Lewis Mammel (l_mammel(AT)att.net), Aug 03 2008

Keywords

Comments

From Lewis Mammel (l_mammel(AT)att.net), Aug 21 2008: (Start)
In Ramanujan's parametric equation: (ax+y)^3 + (b+x^2y)^3 = (bx+y)^3 + (a+x^2y)^3
where a^2 + ab + b^2 = 3xy^2.
This sequence is obtained by setting a=0, y=1 and finding the solution to b^2=3x:
b=3n, x=3n^2. (End)

Examples

			For a(1)=12: 1 + 12^3 = 9^3 + 10^3 = 1729.
		

Crossrefs

Programs

  • PARI
    Vec(6*x*(2 + 15*x + 18*x^2 + x^3) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Oct 26 2019

Formula

a(n) = 9*n^4 + 3*n, with b(n) = 9*n^4 and c(n) = 9*n^3 + 1 we have 1 + a(n)^3 = b(n)^3 + c(n)^3.
From Colin Barker, Oct 25 2019: (Start)
G.f.: 6*x*(2 + 15*x + 18*x^2 + x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
a(n) = 3*(n + 3*n^4).
(End)

Extensions

Edited by Joerg Arndt, Oct 26 2019

A259753 For increasing z > 0, integers, y - x, where x^3 + y^3 = z^3 + 1, with y > x > 1.

Original entry on oeis.org

1, 30, 71, 100, 104, 485, 1169, 705, 887, 1727, 421, 775, 4499, 4260, 3180, 5748, 9719, 307, 6092, 18521, 20304, 18825, 32255, 6174, 33082, 7601, 29400, 17607, 13457, 52487, 1727, 44794, 41772, 76328, 1801, 29707, 80999, 119789, 111226, 132105, 122730, 171071, 123117, 237275
Offset: 1

Views

Author

David Rabahy, Jul 21 2015

Keywords

Comments

It seems to me the sequence can never drop all the way to 1 again.
From Robert Israel, Oct 13 2015: (Start)
There are only finitely many n with a(n) = 1.
Such n correspond to solutions of the Diophantine equation x (2 x^2 + 3 x + 3) = z^3.
Since gcd(x, 2 x^2 + 3 x + 3) = 1 or 3, we get two cases:
if x is not divisible by 3, x = s^3, z = s^3 t^3 where 2 s^6 + 3 s^3 + 3 = t^3,
otherwise x = 9 s^3, z = 3 s t, where 54 s^6 + 9 s^3 + 1 = t^3.
The algebraic curves 2 s^6 + 3 s^3 + 3 = t^3 and 54 s^6 + 9 s^3 + 1 = t^3 both have genus 4, so by Faltings's theorem they have only finitely many rational solutions.
(End)

Examples

			10 - 9 = 1 is the first number in the sequence because 10^3 + 9^3 = 12^3 + 1^3 and no other lower z produces a result.
		

Crossrefs

Cf. A001235.
Cf. x = A050792, y = A050793, z = A050791 , x^3+y^3 = A050794.

Programs

  • Maple
    Cubes:= {seq(x^3, x=2..10^4)}:
    count:= 0:
    for z from 1 to 10^4 do
      s:= z^3+1;
      M:= map(t -> s-t, select(`<`,Cubes,floor(s/2))) intersect Cubes;
      for m in M do
        count:= count+1;
        y:= simplify(m^(1/3));
        x:= simplify((s-m)^(1/3));
        A[count]:= y-x;
      od
    od:
    seq(A[i],i=1..count); # Robert Israel, Oct 13 2015
  • Mathematica
    y = 3; lst = {}; While[y < 100001, x = 2; While[x < y, z = (y^3 + x^3 - 1)^(1/3); If[IntegerQ[z], AppendTo[lst, {z, y, x, y - x}]; Print[{z, y, x, y - x}]]; x++]; y++]; Last@ Transpose@ Sort@ lst (* Robert G. Wilson v, Jul 21 2015 and modified Oct 14 2015 *)

Formula

a(n) = A050793(n) - A050792(n). - Robert G. Wilson v, Jul 21 2015
Showing 1-5 of 5 results.