A050802 Squares expressible as the sum of two positive cubes in at least one way.
9, 16, 576, 1024, 6561, 9604, 11664, 28224, 36864, 51984, 65536, 97344, 140625, 250000, 275625, 345744, 419904, 450241, 614656, 717409, 746496, 1028196, 1058841, 1399489, 1500625, 1590121, 1750329, 1806336, 1882384, 2359296
Offset: 1
Examples
E.g., 717409 = 847^2 = 33^3 + 88^3. 169 = 13^2 = (-7)^3 + 8^3 is not a member, because 169 is not the sum of two positive cubes. - _Jonathan Sondow_, Oct 28 2013
References
- "Game, Set and Math" by Ian Stewart, Chapter 8 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
Links
- Tony D. Noe and Harry J. Smith, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to sums of squares
Programs
-
Mathematica
ok[n_] := Length[Select[PowersRepresentations[n, 2, 3], #[[1]] != 0 & ]] >= 1; Select[Range[1600]^2, ok] (* Jean-François Alcover, Apr 22 2011 *) Union[Select[Total/@Tuples[Range[250]^3,2],IntegerQ[Sqrt[#]]&]] (* Harvey P. Dale, Mar 04 2012 *)
-
PARI
{ nstart=1; a2start=9; n=nstart; a=sqrtint(a2start)-1; until (0, a=a+1; a2=a*a; b1=((a2/2)^(1/3))\1; for (b=b1, a, b3=b*b*b; c1=1; if (a2 > b3, c1=((a2-b3)^(1/3))\1;); for (c=c1, b, d=b3 + c*c*c; if (d > a2 && c == 1, break(2)); if (d > a2, break); if (a2 == d, print(n, " ", a2); write("b050802.txt", n, " ", a2); n=n+1; break(2); ); ) ) ) } \\ Harry J. Smith, Jan 15 2009
-
PARI
is(n)=for(k=sqrtnint((n+1)\2,3),sqrtnint(n-1,3),if(ispower(n-k^3,3),return(issquare(n))));0 \\ Charles R Greathouse IV, Oct 28 2013
Formula
a(n) = A050801(n)^2. - Jonathan Sondow, Oct 28 2013
Extensions
More terms from Michel ten Voorde
Definition corrected by Jonathan Sondow, Oct 28 2013