A050804 Numbers n such that n^3 is the sum of two nonzero squares in exactly one way.
2, 8, 18, 32, 72, 98, 128, 162, 242, 288, 392, 512, 648, 722, 882, 968, 1058, 1152, 1458, 1568, 1922, 2048, 2178, 2592, 2888, 3528, 3698, 3872, 4232, 4418, 4608, 4802, 5832, 6272, 6498, 6962, 7688, 7938, 8192
Offset: 1
Examples
E.g. 32^3 = 128^2 + 128^2. Is there an example using different squares? No: If n^3 has only one representation as n^3 = a^2+b^2 with 0<a<=b, then a=b. - _Jonathan Vos Post_, Feb 02 2011
Links
Programs
-
Haskell
a050804 n = a050804_list !! (n-1) a050804_list = filter ((== 1) . a084888) [0..] -- Reinhard Zumkeller, Jul 18 2012
-
Mathematica
ok[n_] := Length @ Cases[ PowersRepresentations[n^3, 2, 2], {?Positive, ?Positive}] == 1; Select[Range[8200], ok] (* Jean-François Alcover, Apr 05 2011 *)
-
Python
from sympy import factorint A050804_list = [2*i for i in range(1,10**6) if not any(p % 4 == 1 or factorint(i)[p] % 2 for p in factorint(i))] # Chai Wah Wu, Feb 27 2016
Formula
n such that A084888(n) = 1.
Extensions
More terms from Michel ten Voorde and Jud McCranie
Comments