cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A050806 Inserting any digit between adjacent digits of prime p produces exactly 1 new prime.

Original entry on oeis.org

101, 149, 163, 241, 269, 271, 317, 347, 367, 397, 409, 419, 443, 487, 509, 541, 587, 601, 641, 761, 787, 811, 821, 863, 907, 919, 1439, 1481, 1663, 1877, 2089, 2111, 2579, 2593, 2671, 2819, 2971, 3121, 3457, 3463, 3571, 3643, 3659, 3769, 3917, 4001
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Examples

			101 yields only one prime using digit '6' -> 1(6)0(6)1 -> prime 16061.
		

Crossrefs

Programs

  • Haskell
    import Data.List (intersperse)
    a050806 n = a050806_list !! (n-1)
    a050806_list = filter ((== 1) . sum . f) a000040_list where
       f p = map (i $ show p) "0123456789"
       i ps d = a010051' (read $ intersperse d ps :: Integer)
    -- Reinhard Zumkeller, May 07 2013
  • Mathematica
    aQ[n_]:=Plus@@Boole[PrimeQ[Table[FromDigits[Riffle[IntegerDigits[n],k]],{k,0,9}]]]==1; Select[Prime[Range[5,555]],aQ[#]&] (* Jayanta Basu, May 30 2013 *)

Extensions

Offset corrected by Reinhard Zumkeller, May 07 2013

A133321 Inserting any (identical) digit between adjacent digits of an odd semiprime k never yields a prime.

Original entry on oeis.org

15, 25, 35, 55, 65, 85, 95, 115, 121, 143, 145, 155, 185, 187, 205, 215, 235, 253, 265, 295, 299, 305, 335, 341, 355, 365, 393, 395, 411, 415, 437, 445, 451, 473, 485, 505, 515, 535, 545, 565, 583, 635, 655, 671, 679, 685, 695, 717, 745, 755, 781, 785, 815
Offset: 1

Views

Author

Jonathan Vos Post, Oct 18 2007

Keywords

Comments

Odd semiprime analog of A050805. Trivially true for any digit if we substitute "even semiprime" for "odd semiprime." Trivially true for any semiprime which is a multiple of 5 (A001750). The nonmultiples of 5 in this sequence begin 121, 143, 187, 253, 299, 341.

Examples

			121 is in the sequence because 10201, 11211, 12221, 13231, 14241, 15251, 16261, 17271, 18281, 19291 are all composite.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[11,900,2],PrimeOmega[#]==2&],AllTrue[Table[ FromDigits[ Riffle[ IntegerDigits[#],n]],{n,0,9}],CompositeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 07 2018 *)

Extensions

More terms from R. J. Mathar, Oct 22 2007
Showing 1-2 of 2 results.