cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050819 Increasing odd numbers seen in decimal expansion of Pi (disregarding the decimal period) contiguous, smallest and distinct.

Original entry on oeis.org

3, 141, 59265, 358979, 3238462643, 3832795028841, 97169399375105, 820974944592307, 81640628620899862803, 48253421170679821480865, 132823066470938446095505, 82231725359408128481117450284102701, 9385211055596446229489549303819644288109
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

Leading zero not allowed thus forcing continuation of previous term.

Crossrefs

Extensions

a(12) corrected and a(13) from Sean A. Irvine, Aug 19 2021

A050818 Even numbers seen in decimal expansion of Pi (disregarding the decimal period) contiguous, smallest and distinct.

Original entry on oeis.org

314, 1592, 6, 5358, 97932, 38, 4, 62, 64, 338, 32, 7950, 2, 8, 84, 19716, 939937510, 58, 20, 974, 94, 4592, 30, 78, 16, 40, 628, 620, 8998, 6280, 34, 82, 534, 21170, 6798, 214, 80, 86, 5132, 8230, 66, 470, 938, 44, 60, 9550, 582, 23172, 53594, 0, 812, 848
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

Leading zero not allowed thus forcing continuation of previous term.

Crossrefs

A050817 Odd numbers seen in decimal expansion of Pi (disregarding the decimal period) contiguous, smallest and distinct.

Original entry on oeis.org

3, 1, 41, 5, 9, 265, 35, 89, 7, 93, 23, 8462643, 383, 27, 95028841, 97, 169, 39, 937, 5105, 8209, 749, 445, 92307, 81, 64062862089, 9862803, 4825, 3421, 17067, 9821, 480865, 13, 28230664709, 3844609, 5505, 8223, 17, 25, 359, 4081, 28481, 11
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

Leading zero not allowed thus forcing continuation of previous term.

Crossrefs

A131751 Numbers that are both centered triangular and centered pentagonal.

Original entry on oeis.org

1, 31, 1891, 117181, 7263301, 450207451, 27905598631, 1729696907641, 107213302675081, 6645495068947351, 411913480972060651, 25531990325198812981, 1582571486681354344141, 98093900183918770523731, 6080239239916282418127151, 376876738974625591153359601
Offset: 1

Views

Author

Richard Choulet, Sep 20 2007

Keywords

Comments

We solve 0.5*(3*p^2+3*p+2)=0.5*(5*r^2+5*r+2), i.e., 3*(2*p+1)^2=5*(2*r+1)^2-2.
The Diophantine equation 3*X^2=5*Y^2-2is such that : X is given by A057080 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2+10)^0.5, Y is given by A070997 which satisfies the new formula a(n+1)=4*a(n)+(15*a(n)^2-6)^0.5 while r is given by the sequence 0,3,27,216,1704,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*(60*a(n)^2+60*a(n)+9)^0.5, p is given by the sequence 0,4,35,279,2200,... which satisfies a(n+2)=8*a(n+1)-a(n)+3 and a(n+1)=4*a(n)+1.5+0.5*sqrt(60*a(n)^2+60*a(n)+25).

Crossrefs

Programs

  • Maple
    A131751 := proc(n) coeftayl(x*(1-32*x+x^2)/(1-x)/(1-62*x+x^2),x=0,n) ; end: seq(A131751(n),n=1..20) ; # R. J. Mathar, Oct 24 2007
  • Mathematica
    LinearRecurrence[{63,-63,1},{1,31,1891},20] (* Harvey P. Dale, Oct 01 2017 *)

Formula

a(n+2) = 62*a(n+1) - a(n) - 30, a(n+1) = 31*a(n) - 15 + sqrt(960*a(n)^2 - 960*a(n)+225).
G.f.: f(z) = a(1)*z+a(2)*z^2+... = z*(1-32*z+z^2)/((1-z)*(1-62*z+z^2)).
A005891 INTERSECT A005448. - R. J. Mathar, Oct 24 2007

Extensions

Corrected and extended by R. J. Mathar, Oct 24 2007
Showing 1-4 of 4 results.