cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051006 Prime constant: decimal value of (A010051 interpreted as a binary number).

Original entry on oeis.org

4, 1, 4, 6, 8, 2, 5, 0, 9, 8, 5, 1, 1, 1, 1, 6, 6, 0, 2, 4, 8, 1, 0, 9, 6, 2, 2, 1, 5, 4, 3, 0, 7, 7, 0, 8, 3, 6, 5, 7, 7, 4, 2, 3, 8, 1, 3, 7, 9, 1, 6, 9, 7, 7, 8, 6, 8, 2, 4, 5, 4, 1, 4, 4, 8, 8, 6, 4, 0, 9, 6, 0, 6, 1, 9, 3, 5, 7, 3, 3, 4, 1, 9, 6, 2, 9, 0, 0, 4, 8, 4, 2, 8, 4, 7, 5, 7, 7, 7, 9, 3, 9, 6, 1, 6
Offset: 0

Views

Author

Keywords

Comments

From Ferenc Adorjan (fadorjan(AT)freemail.hu): (Start)
Decimal expansion of the representation of the sequence of primes by a single real in (0,1).
Any monotonic integer sequence can be represented by a real number in (0, 1) in such a way that in the binary representation of the real, the n-th digit of the fractional part is 1 if and only if n is in the sequence.
Examples of the inverse mapping are A092855 and A092857. (End)
Is the prime constant an EL number? See Chow's 1999 article. - Lorenzo Sauras Altuzarra, Oct 05 2020
The asymptotic density of numbers with a prime number of trailing 0's in their binary representation (A370596), or a prime number of trailing 1's. - Amiram Eldar, Feb 23 2024

Examples

			0.414682509851111660... (base 10) = .01101010001010001010001... (base 2).
		

Crossrefs

Programs

  • Maple
    a := n -> ListTools:-Reverse(convert(floor(evalf[1000](sum(1/2^ithprime(k), k = 1 .. infinity)*10^(n+1))), base, 10))[n+1]: - Lorenzo Sauras Altuzarra, Oct 05 2020
  • Mathematica
    RealDigits[ FromDigits[ {{Table[ If[ PrimeQ[n], 1, 0], {n, 370}]}, 0}, 2], 10, 111][[1]] (* Robert G. Wilson v, Jan 15 2005 *)
    RealDigits[Sum[1/2^Prime[k], {k, 1000}], 10, 100][[1]] (* Alexander Adamchuk, Aug 22 2006 *)
  • PARI
    { mt(v)= /*Returns the binary mapping of v monotonic sequence as a real in (0,1)*/ local(a=0.0,p=1,l);l=matsize(v)[2]; for(i=1,l,a+=2^(-v[i])); return(a)} \\ Ferenc Adorjan
    
  • PARI
    { default(realprecision, 20080); x=0; m=67000; for (n=1, m, if (isprime(n), a=1, a=0); x=2*x+a; ); x=10*x/2^m; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b051006.txt", n, " ", d)); } \\ Harry J. Smith, Jun 15 2009
    
  • PARI
    suminf(n=1,.5^prime(n)) \\ Then: digits(%\.1^default(realprecision)) to get seq. of digits. N.B.: Functions sumpos() and sumnum() yield much less accurate results. - M. F. Hasler, Jul 04 2017

Formula

Prime constant C = Sum_{k>=1} 1/2^prime(k), where prime(k) is the k-th prime. - Alexander Adamchuk, Aug 22 2006
From Amiram Eldar, Aug 11 2020: (Start)
Equals Sum_{k>=1} A010051(k)/2^k.
Equals Sum_{k>=1} 1/A034785(k).
Equals (1/2) * A119523.
Equals Sum_{k>=1} pi(k)/2^(k+1), where pi(k) = A000720(k). (End)