A171102
Pandigital numbers: numbers containing the digits 0-9. Version 2: each digit appears at least once.
Original entry on oeis.org
1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457698, 1023457869, 1023457896, 1023457968, 1023457986, 1023458679, 1023458697, 1023458769, 1023458796, 1023458967, 1023458976
Offset: 1
-
Take[ Select[ FromDigits@# & /@ Permutations[ Range[0, 9], {10}], # > 10^9 &], 20] (* Robert G. Wilson v, May 30 2010 *)
-
is_A171102(n)=9<#vecsort(Vecsmall(Str(n)),,8) /* assuming that n is a nonnegative integer. In PARI/GP V.2.4 - 2.9 this is faster than other possibilities involving Set(),Vec(),eval() or digits() */ \\ M. F. Hasler, Jan 10 2012, Sep 19 2017
-
A171102=A050278 /*** valid for n <= 9*9! ***/ \\ M. F. Hasler, Jan 10 2012
A051018
Numbers that are 2-persistent but not 3-persistent.
Original entry on oeis.org
1023456789, 1023456879, 1023457689, 1023457869, 1023458679, 1023458769, 1023465789, 1023465879, 1023467589, 1023467859, 1023468579, 1023468759, 1023475689, 1023475869, 1023476589, 1023476859, 1023478569, 1023478659, 1023485679, 1023485769, 1023486579, 1023486759
Offset: 1
-
is_A051018(n,k=3)=10>#Set(Vec(Str(k*n))) & !while(k--,9<#Set(Vec(Str(k*n))) || return(0)) \\ M. F. Hasler, Jan 10 2012
A051019
Numbers that are 3-persistent but not 4-persistent.
Original entry on oeis.org
1052674893, 1052687493, 1052746893, 1052748693, 1052867493, 1052874693, 1053267489, 1053268749, 1053274869, 1053286749, 1053287469, 1065273489, 1065287349, 1067285493, 1067328549, 1068547293, 1068547329, 1068549273
Offset: 1
A051264
Numbers that are 1-persistent but not 2-persistent.
Original entry on oeis.org
1023456798, 1023456897, 1023456978, 1023456987, 1023457698, 1023457896, 1023457968, 1023457986, 1023458697, 1023458796, 1023458967, 1023458976, 1023459678, 1023459687, 1023459768, 1023459786, 1023459867, 1023459876
Offset: 1
A204047
Smallest number that is n-persistent but not (n+1)-persistent, i.e., k, 2k, ..., nk, but not (n+1)k, are pandigital in the sense of A171102; 0 if such a number does not exist.
Original entry on oeis.org
1023456798, 1023456789, 1052674893, 1053274689, 13047685942, 36492195078, 153846076923, 251793406487, 0, 1189658042735, 5128207435967, 3846154076923, 125583660720493, 125583660493072, 180106284973592, 201062849735918
Offset: 1
k=36492195078 is the smallest number such that k, 2k, 3k, 4k, 5k, and 6k, each contain all ten digits, but 7k=255445365546 contains only five of the ten, so a(6)= 36492195078.
- Ross Honsberger, More Mathematical Morsels, Mathematical Association of America, 1991, pages 15-18.
A204096
Numbers that are 5-persistent but not 6-persistent.
Original entry on oeis.org
13047685942, 14057869523, 20476859413, 21304768594, 35078196492, 35079219648, 35079648192, 35079649218, 35081964792, 35092196478, 35096478192, 35096479218, 35180796492, 35180964792, 35192079648, 35192096478, 35196478092, 35196479208
Offset: 1
- Ross Honsberger, More Mathematical Morsels, Mathematical Association of America, 1991, pages 15-18.
A204097
Numbers that are 6-persistent but not 7-persistent.
Original entry on oeis.org
36492195078, 48602175913, 48613021759, 49021758613, 49130217586, 49219635078, 53829197460, 53829301746, 53928301746, 54601738293, 54601739283, 58829301746, 59288301746, 60174538293, 60174539283, 60174588293, 60174592883, 64820935179
Offset: 1
- Ross Honsberger, More Mathematical Morsels, Mathematical Association of America, 1991, pages 15-18.
A180618
The next smallest pandigital multiple of the pandigital number A050278(n).
Original entry on oeis.org
2046913578, 10234567980, 2046913758, 10234568970, 10234569780, 10234569870, 2046915378, 10234576980, 2046915738, 10234578960, 10234579680, 10234579860, 2046917358, 10234586970, 2046917538, 10234587960, 10234589670, 10234589760
Offset: 1
Keyword:base and 2 different pandigital definitions introduced by
R. J. Mathar, Oct 06 2010
Showing 1-8 of 8 results.
Comments