cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A092908 Primes in A051022.

Original entry on oeis.org

2, 3, 5, 7, 101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 10007, 10009, 10103, 10301, 10303, 10501, 10601, 10607, 10709, 10903, 10909, 20101, 20107, 20201, 20407, 20507, 20509, 20707, 20807, 20809, 20903
Offset: 1

Views

Author

Jorge Coveiro, Apr 15 2004

Keywords

Programs

  • Mathematica
    Select[Table[FromDigits[Riffle[IntegerDigits[n],0]],{n,300}],PrimeQ] (* Harvey P. Dale, Nov 17 2013 *)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 24 2004

A092907 Duplicate of A051022.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 200, 201
Offset: 0

Views

Author

Keywords

A039723 Numbers in base -10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 150, 151, 152, 153, 154, 155
Offset: 0

Views

Author

Robert Lozyniak (11(AT)onna.com)

Keywords

Examples

			Decimal 25 is "185" in base -10 because 100 - 80 + 5 = 25.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 189.

Crossrefs

Nonnegative numbers in negative bases: this sequence (b=-10), A039724 (b=-2), A073785 (b=-3), A007608 (b=-4), A073786 (b=-5), A073787 (b=-6), A073788 (b=-7), A073789 (b=-8), A073790 (b=-9).
Cf. A051022.
Cf. A305238: negative numbers in base -10.

Programs

  • Haskell
    a039723 0 = 0
    a039723 n = a039723 n' * 10 + m where
       (n',m) = if r < 0 then (q + 1, r + 10) else qr where
                qr@(q, r) = quotRem n (negate 10)
    -- Reinhard Zumkeller, Apr 20 2011
    
  • Mathematica
    ToNegaBases[i_Integer, b_Integer] := FromDigits@ Rest@ Reverse@ Mod[ NestWhileList[(# - Mod[ #, b])/-b &, i, # != 0 &], b]
  • PARI
    A039723 = base(n, b=-10) = if(n, base(n\b, b)*10 + n%b, 0) \\ M. F. Hasler, Oct 16 2018 [Corrected by Jianing Song, Oct 21 2018]
  • Python
    def A039723(n):
        s, q = '', n
        while q >= 10 or q < 0:
            q, r = divmod(q, -10)
            if r < 0:
                q += 1
                r += 10
            s += str(r)
        return int(str(q)+s[::-1]) # Chai Wah Wu, Apr 10 2016
    

A338754 Duplicate each decimal digit of n, so 0 -> 00, ..., 9 -> 99.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 1100, 1111, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 2200, 2211, 2222, 2233, 2244, 2255, 2266, 2277, 2288, 2299, 3300, 3311, 3322, 3333, 3344, 3355, 3366, 3377, 3388, 3399, 4400, 4411, 4422, 4433, 4444, 4455, 4466
Offset: 0

Views

Author

Kevin Ryde, Nov 06 2020

Keywords

Comments

This is equivalent to changing decimal digits 0,1,..,9 to base 100 digits 0,11,..,99, so the sequence is numbers which can be written in base 100 using only digits 0,11,..,99. Also, numbers whose decimal digit runs are all even lengths (including 0 as no digits at all).
This sequence first differs from A044836 (apart from term 0) at a(100) = 110000 whereas A044836(100) = 10011, because A044836 allows odd length digit runs provided there are more even than odd.

Examples

			For n=5517, digits duplicate to a(n) = 55551177.
		

Crossrefs

Cf. A051022 (0 above each digit), A044836.
Other bases: A001196, A338086.

Programs

  • PARI
    a(n) = fromdigits(digits(n),100)*11;
    
  • Python
    def A338754(n): return int(''.join(d*2 for d in str(n))) # Chai Wah Wu, May 07 2022

Formula

a(n) = Sum_{i=0..k} 11*d[i]*100^i where the decimal expansion of n is n = Sum_{i=0..k} d[i]*10^i with digits 0 <= d[i] <= 9.
a(n) = A051022(n)*11 for n > 0. - Kritsada Moomuang, Oct 20 2019

A252480 Numbers whose decimal representation has at least one '0' digit in a position other than the final digit.

Original entry on oeis.org

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 600, 601, 602, 603, 604, 605, 606
Offset: 1

Views

Author

M. F. Hasler, Dec 28 2014

Keywords

Comments

Similar but different sequences are the "Cyclops numbers" A134808 and A032945 and A051022, which are subsequences, except for the 1- and 2-digit terms.
Also, numbers whose decimal representation cannot be split up between any two digits without producing a string with a leading zero (other than "0" itself).
Also, numbers n > 9 such that floor(n/10) is in A011540, i.e., has a digit '0'.

Programs

  • Mathematica
    Select[Range[10,700],DigitCount[Floor[#/10],10,0]>0&] (* Harvey P. Dale, May 10 2020 *)
  • PARI
    is(n)=n>9 && !vecmin(digits(n\10))

A343550 Numbers k > 9 such that the number m formed by inserting a digit 0 between each pair of digits in k is divisible by k.

Original entry on oeis.org

10, 15, 18, 20, 30, 40, 45, 50, 60, 70, 80, 90, 100, 111, 120, 126, 150, 180, 200, 222, 240, 250, 285, 300, 333, 360, 400, 444, 450, 480, 500, 555, 600, 666, 700, 750, 777, 800, 888, 900, 999, 1000, 1041, 1110, 1185, 1200, 1260, 1395, 1443, 1500, 1554, 1665
Offset: 1

Views

Author

Lars Blomberg, Apr 19 2021

Keywords

Comments

One-digit terms are not considered since no 0 digits can be inserted.
If k is a term then so is k*10^i, i > 0.
If k is a term then so is k*i, 2 <= i <= 9 as long as no carry occurs in the multiplication.
The number of terms with n digits is (12, 29, 51, 107, 149, 240, 308, 438, 566, 789, 1007), 2 <= n <= 12.

Examples

			18 is a term because 108/18=6, and so is 1185 because 1010805/1185=853.
10101/111=91, 1010100/1110=910, 101010000/11100=9100, ... so 111, 1110, 11100, ... are all terms.
1000401/1041=961 and 2000802/2082=961 so 1041 and 2082 are terms but 3123 is not since it does not divide 3010203.
		

Crossrefs

Cf. A062846 (binary), A062891 (ternary).

A092909 Interpolate 0's between each pair of digits of n-th prime.

Original entry on oeis.org

2, 3, 5, 7, 101, 103, 107, 109, 203, 209, 301, 307, 401, 403, 407, 503, 509, 601, 607, 701, 703, 709, 803, 809, 907, 10001, 10003, 10007, 10009, 10103, 10207, 10301, 10307, 10309, 10409, 10501, 10507, 10603, 10607, 10703, 10709, 10801, 10901, 10903, 10907, 10909
Offset: 1

Views

Author

Jorge Coveiro, Apr 15 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Riffle[IntegerDigits[p],0]],{p,Prime[Range[50]]}] (* Harvey P. Dale, Aug 15 2021 *)
  • PARI
    a(n)={fromdigits(concat([[0,d] | d<-digits(prime(n))]))} \\ Andrew Howroyd, Feb 12 2020

Formula

a(n) = A051022(A000040(n)). - Andrew Howroyd, Feb 12 2020

Extensions

Name clarified and terms a(31) and beyond from Andrew Howroyd, Feb 12 2020

A343551 Numbers m/k where the number m is formed by inserting a digit 0 between each pair of digits in k, and m is divisible by k.

Original entry on oeis.org

10, 7, 6, 10, 10, 10, 9, 10, 10, 10, 10, 10, 100, 91, 85, 81, 70, 60, 100, 91, 85, 82, 73, 100, 91, 85, 100, 91, 90, 85, 100, 91, 100, 91, 100, 94, 91, 100, 91, 100, 91, 1000, 961, 910, 853, 850, 810, 739, 721, 700, 676, 637, 600, 571, 546, 1000, 961, 91
Offset: 1

Views

Author

Lars Blomberg, Apr 19 2021

Keywords

Comments

This sequence is parallel to A343550 and A343552, therefore some values are repeated.

Examples

			6 is a term because 108/18=6, and so is 853 because 1010805/1185=853.
10101/111=91, 1010100/1110=910, 101010000/11100=9100, etc. are all terms.
1000401/1041=961 and 2000802/2082=961 are terms but not 3123.
		

Crossrefs

A343552 Numbers m such that for some number k dividing n, m is formed by inserting a digit 0 between each pair of digits of k.

Original entry on oeis.org

100, 105, 108, 200, 300, 400, 405, 500, 600, 700, 800, 900, 10000, 10101, 10200, 10206, 10500, 10800, 20000, 20202, 20400, 20500, 20805, 30000, 30303, 30600, 40000, 40404, 40500, 40800, 50000, 50505, 60000, 60606, 70000, 70500, 70707, 80000, 80808, 90000
Offset: 1

Views

Author

Lars Blomberg, Apr 19 2021

Keywords

Comments

If m is a term then so is m*10^(2i), i > 0.
If m is a term then so is m*i, 2 <= i <= 9 as long as no carry occurs in the multiplication.

Examples

			108 is a term because 108/18=6, and so is 1010805 because 1010805/1185=853.
		

Crossrefs

Showing 1-9 of 9 results.