cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051032 Summatory Rudin-Shapiro sequence for 2^(n-1).

Original entry on oeis.org

2, 3, 3, 5, 5, 9, 9, 17, 17, 33, 33, 65, 65, 129, 129, 257, 257, 513, 513, 1025, 1025, 2049, 2049, 4097, 4097, 8193, 8193, 16385, 16385, 32769, 32769, 65537, 65537, 131073, 131073, 262145, 262145, 524289, 524289, 1048577, 1048577, 2097153
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    d2n[n_]:=Module[{x=2^n+1},{x,x}];Join[{2},Flatten[Array[d2n,30]]] (* Harvey P. Dale, May 26 2011 *)

Formula

Apart from leading term, just A000051 (2^n + 1) doubled up.
G.f.: -x*(-2 - x + 4*x^2)/((x - 1)*(2*x^2 - 1)). - R. J. Mathar, Jul 15 2016
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3). - Wesley Ivan Hurt, Aug 19 2022
E.g.f.: cosh(x) + cosh(sqrt(2)*x) + sinh(x) + sinh(sqrt(2)*x)/sqrt(2) - 2. - Stefano Spezia, Feb 05 2023