A051038 11-smooth numbers: numbers whose prime divisors are all <= 11.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 105, 108, 110, 112, 120, 121, 125, 126, 128, 132, 135, 140
Offset: 1
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (First 5000 terms from Reinhard Zumkeller)
- Eric Weisstein's World of Mathematics, Smooth Number.
Crossrefs
Programs
-
Magma
[n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(11)]; // Bruno Berselli, Sep 24 2012
-
Mathematica
mx = 150; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}] (* Robert G. Wilson v, Aug 17 2012 *) aQ[n_]:=Max[First/@FactorInteger[n]]<=11; Select[Range[140],aQ[#]&] (* Jayanta Basu, Jun 05 2013 *) Block[{k=5,primorial:=Times@@Prime@Range@#&},Select[Range@200,#*EulerPhi@primorial@k==EulerPhi[#*primorial@k]&]] (* Federico Provvedi, Jul 09 2022 *)
-
PARI
test(n)=m=n; forprime(p=2,11, while(m%p==0,m=m/p)); return(m==1) for(n=1,200,if(test(n),print1(n",")))
-
PARI
list(lim,p=11)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
-
Python
import heapq from itertools import islice from sympy import primerange def agen(p=11): # generate all p-smooth terms v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1)) while True: v = heapq.heappop(h) if v != oldv: yield v oldv = v for p in psmooth_primes: heapq.heappush(h, v*p) print(list(islice(agen(), 67))) # Michael S. Branicky, Nov 20 2022
-
Python
from sympy import integer_log, prevprime def A051038(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) def f(x): return n+x-g(x,11) return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
Formula
Sum_{n>=1} 1/a(n) = Product_{primes p <= 11} p/(p-1) = (2*3*5*7*11)/(1*2*4*6*10) = 77/16. - Amiram Eldar, Sep 22 2020
Comments