A051129 Table T(n,k) = k^n read by upwards antidiagonals (n >= 1, k >= 1).
1, 1, 2, 1, 4, 3, 1, 8, 9, 4, 1, 16, 27, 16, 5, 1, 32, 81, 64, 25, 6, 1, 64, 243, 256, 125, 36, 7, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1, 1024, 19683, 65536, 78125, 46656, 16807, 4096, 729, 100, 11
Offset: 1
Examples
1 2 3 4 5 6 7 1 4 9 16 25 36 49 1 8 27 64 125 216 343 1 16 81 256 625 1296 2401 1 32 243 1024 3125 7776 16807 1 64 729 4096 15625 46656 117649 1 128 2187 16384 78125 279936 823543
Links
- T. D. Noe, Rows n = 1..50 of triangle, flattened
Crossrefs
Programs
-
Haskell
a051129 n k = k ^ (n - k) a051129_row n = a051129_tabl !! (n-1) a051129_tabl = zipWith (zipWith (^)) a002260_tabl $ map reverse a002260_tabl -- Reinhard Zumkeller, Sep 14 2014
-
Maple
T:= (n, k)-> k^n: seq(seq(T(1+d-k, k), k=1..d), d=1..11); # Alois P. Heinz, Apr 18 2020
-
Mathematica
Table[ k^(n-k+1), {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 30 2012 *)
-
PARI
b(n) = floor(1/2 + sqrt(2 * n)); vector(100, n, (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1)) \\ Altug Alkan, Dec 09 2015
Formula
a(n) = (n - b(n) * (b(n) - 1) / 2)^(b(n) * (b(n) + 1) / 2 - n + 1), where b(n) = [ 1/2 + sqrt(2 * n) ]. (b(n) is the n-th term of A002024.) - Robert A. Stump (bee_ess107(AT)yahoo.com), Aug 29 2002
Extensions
More terms from James Sellers, Dec 11 1999
Comments