A051177 Perfectly partitioned numbers: numbers k that divide the number of partitions p(k).
1, 2, 3, 124, 158, 342, 693, 1896, 3853, 4434, 5273, 8640, 14850, 17928, 110516, 178984, 274534
Offset: 1
Examples
a(4) = 124 because p(124) = 2841940500 is divisible by 124. a(7) = 693 because partition number of 693 is 43397921522754943172592795 = 693*62623263380598763596815.
References
- Problem 2464, Journal of Recreational Mathematics 29(4), p. 304.
- Solution to problem 2464 "Perfect Partitions", Journal of Recreational Mathematics 30(4), pp. 294-295, 1999-2000.
Links
- Carlos Rivera, Puzzle 1029. p that divides the number of partitions of p, The Prime Puzzles and Problems Connection.
Crossrefs
Programs
-
Mathematica
Do[ If[ Mod[ PartitionsP@n, n] == 0, Print@n], {n, 250000}] (* Robert G. Wilson v *) Select[Range[275000],Divisible[PartitionsP[#],#]&] (* Harvey P. Dale, Aug 21 2013~ *)
-
PARI
for(n=1,20000,if(numbpart(n)%n==0,print1(n,","))) \\ Klaus Brockhaus, Sep 06 2006
Extensions
More terms from Don Reble, Jul 26 2002
Comments