cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000568 Number of outcomes of unlabeled n-team round-robin tournaments.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 56, 456, 6880, 191536, 9733056, 903753248, 154108311168, 48542114686912, 28401423719122304, 31021002160355166848, 63530415842308265100288, 244912778438520759443245824, 1783398846284777975419600287232, 24605641171260376770598003978281472
Offset: 0

Views

Author

Keywords

Comments

Harary and Palmer give incorrect values for a(24) and a(25); the correct values are a(24) = 195692027657521876084316842660833482785173437775365039898624 and a(25) = 131326696677895002131450257709457767457170027052967027982788816896. - Vladeta Jovovic, Apr 08 2001
a(n) appears to be the number of even graphs with n vertices; see comment in A334335. - Pontus von Brömssen, May 05 2020 [This has been proved by Royle et al. 2023. - Pontus von Brömssen, Apr 06 2022]

References

  • R. L. Davis, Structure of dominance relations, Bull. Math. Biophys., 16 (1954), 131-140.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 157 and 523.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 126 and 245.
  • J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 87.
  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006125 for the labeled analog, A051337.
Euler transform of A334335.

Programs

  • Maple
    with(combinat):with(numtheory): for n from 1 to 30 do p:=partition(n): s:=0:for k from 1 to nops(p) do ex:=1:for i from 1 to nops(p[k]) do if p[k][i] mod 2=0 then ex:=0:break:fi:od:
    if ex=1 then q:=convert(p[k],multiset): for i from 1 to n do a(i):=0:od:for i from 1 to nops(q) do a(q[i][1]):=q[i][2]:od:
    c:=1:ord:=1:for i from 1 to n do c:=c*a(i)!*i^a(i): if a(i)<>0 then ord:=lcm(ord,i):fi:od: g:=0:for d from 1 to ord do if ord mod d=0 then g1:=0:for del from 1 to n do if d mod del=0 then g1:=g1+del*a(del):fi:od:g:=g+phi(ord/d)*g1*(g1-1):fi:od: s:=s+2^(g/ord/2)/c:fi:
    od: print(n,s); od: # Vladeta Jovovic
  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
    a[n_] := a[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!);
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    oddp(v) = {for(i=1, #v, if(bitand(v[i],1)==0, return(0)));1}
    a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^edges(p))); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import product
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000568(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*gcd(r,s) for r,s in product(p.keys(),repeat=2))-sum(p.values())>>1),prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n) if all(q&1 for q in p))) # Chai Wah Wu, Jul 01 2024

Formula

Davis's formula: a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j},
where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc.,
and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s gcd(r,s) - Sum_{r} j_r ].

Extensions

More terms from Vladeta Jovovic

A054946 Number of strongly connected labeled tournaments on n nodes.

Original entry on oeis.org

1, 0, 2, 24, 544, 22320, 1677488, 236522496, 64026088576, 33832910196480, 35262092417856512, 72926863133112198144, 300318571786159783496704, 2467430973323656141183549440, 40490606137578335674252914280448
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

For n>=3, a(n) is equal to the number of minimal idempotent generating sets of the semigroup of all singular mappings on {1,2,...,n}. (In the reference below, Howie gave a correspondence between such generating sets and strongly connected labeled tournaments, but stated an incorrect formula for a(n).) - James East, Jan 08 2013

Examples

			For n=3, there are two minimal idempotent generating sets for the semigroup of singular mappings on {1,2,3}.  Writing (a,b,c) to indicate the map for which 1->a, etc, the relevant generating sets are: {(1,1,3),(1,2,2),(3,2,3)} and {(2,2,3),(1,3,3),(1,2,1)}.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.

Crossrefs

Cf. A000568 (unlabeled tournaments), A051337 (strongly connected unlabeled tournaments).

Programs

  • Maple
    with(powseries): powcreate(t(n)=2^(n*(n-1)/2)/n!): s := evalpow(1-1/t): a := tpsform(s, x, 21): for n from 0 to 20 do printf(`%d,`,n!*coeff(a,x,n)) od:
    f:=array(0..500); F:=array(0..500); M:=100; f[1]:=1; F[1]:=1; lprint(1,f[1]); for n from 2 to M do F[n]:=2^(n*(n-1)/2); f[n]:=F[n]-add( binomial(n,s)*f[s]*F[n-s], s=1..n-1); lprint(n,f[n]); od:
  • Mathematica
    F[n_] := 2^(n*(n - 1)/2);
    a[1] = 1; a[n_] := a[n] = F[n] - Sum[Binomial[n, s]*a[s]*F[n-s], {s, 1, n-1 }];
    Array[a, 15] (* Jean-François Alcover, Nov 13 2017, from first formula *)
  • PARI
    seq(n)={my(a=vector(n)); for(n=1, n, a[n] = 2^(n*(n-1)/2) - sum(k=1, n-1, binomial(n,k)*2^((n-k)*(n-k-1)/2)*a[k])); a} \\ Andrew Howroyd, Jan 10 2022

Formula

Let F(n) = 2^(n*(n-1)/2). Then a(n) is defined by the recurrence a(1)=1, F(n) = a(n) + Sum_{s=1..n-1} binomial(n,s)*a(s)*F(n-s). [Wright]
E.g.f.: 1-1/(1+f(x)) where f(x) = Sum_{m>=1} 2^(m(m-1)/2) x^m / m!.
Wright also gives an asymptotic expansion for a(n).
Showing 1-2 of 2 results.