cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003030 Number of strongly connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 1, 18, 1606, 565080, 734774776, 3523091615568, 63519209389664176, 4400410978376102609280, 1190433705317814685295399296, 1270463864957828799318424676767488, 5381067966826255132459611681511359329536, 90765788839403090457244128951307413371883494400
Offset: 1

Views

Author

Keywords

Comments

As usual, there can be an edge both from i to j and from j to i.

Examples

			a(3) = 18 (the symbol = denotes a pair of parallel edges): 1->2->3->1 (2 such); 1=2->3->1 (6); 1=2=3->1 (6); 1=2=3=1 (1); 1=2=3 (3).
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 428.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A035512, A054946 (strongly connected labeled tournaments), A054947.

Programs

  • Maple
    A003030 := proc(n)
        option remember;
        if n =1 then
            1;
        else
            A054947(n)+add(binomial(n-1,t-1)*procname(t)*A054947(n-t),t=1..n-1) ;
        end if;
    end proc:
    seq(A003030(n),n=1..10) ; # R. J. Mathar, May 10 2016
  • Mathematica
    b[1]=1; b[n_]:=b[n]=2^(n*(n-1))-Sum[Binomial[n,j]*2^((n-1)*(n-j))*b[j],{j,1,n-1}];
    a[1]=1; a[n_]:=a[n]=b[n]+Sum[Binomial[n-1,j-1]*b[n-j]*a[j],{j,1,n-1}];
    Table[a[n],{n,1,15}] (* Vaclav Kotesovec, May 19 2015 *)
  • PARI
    \\ here B(n) is A054947 as vector.
    B(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=2^(n*(n-1))-sum(j=1, n-1, binomial(n, j)*2^((n-1)*(n-j))*v[j])); v}
    seq(n)={my(u=B(n), v=vector(n)); v[1]=1; for(n=2, #v, v[n]=u[n]+sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v} \\ Andrew Howroyd, Sep 10 2018

Formula

a(n) ~ 2^(n*(n-1)). - Vaclav Kotesovec, May 19 2015

Extensions

a(12)-a(13) added by Andrew Howroyd, Sep 10 2018

A054947 Enumerates pairs consisting of a strongly connected labeled tournament and an arbitrary labeled tournament.

Original entry on oeis.org

1, 0, 16, 1536, 557056, 731381760, 3517947314176, 63491024068018176, 4399839304395507367936, 1190389701200990489133711360, 1270450770186900638201337522159616, 5381052721259860098970976735257549602816, 90765718885519516263620106778209295628266110976
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 428, see b_n.

Crossrefs

Programs

  • Maple
    A054947 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            2^(n*(n-1))-add(binomial(n,t)*2^((n-1)*(n-t))*procname(t),t=1..n-1) ;
        end if;
    end proc: # R. J. Mathar, May 10 2016
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 2^(n(n-1)) - Sum[Binomial[n, j] 2^((n-1)(n-j)) a[j], {j, 1, n-1}];
    Array[a, 13] (* Jean-François Alcover, Aug 27 2019 *)
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=2^(n*(n-1))-sum(j=1, n-1, binomial(n, j)*2^((n-1)*(n-j))*v[j])); v} \\ Andrew Howroyd, Sep 09 2018

Formula

a(n) = A054946(n) * A006125(n). - Andrew Howroyd, Jan 10 2022

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A051337 Number of strongly connected tournaments on n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 6, 35, 353, 6008, 178133, 9355949, 884464590, 152310149735, 48234782263293, 28304491788158056, 30964247546702883729, 63468402142317299907481, 244785748571033855024746438, 1782909084196274276970660380187, 24602074618353524534591008760307017
Offset: 0

Views

Author

Keywords

Comments

A tournament is strongly connected (or strong) if there is a directed path between any pair of points.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 127, Eq. (5.2.4);
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 523.

Crossrefs

Programs

  • Mathematica
    m = 20;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
    b[n_] := b[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!);
    B[x_] = Sum[b[k] x^k, {k, 0, m}];
    A[x_] = 2 - 1/B[x];
    A[x] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A000568 *)

Formula

G.f.: = 2 - 1/B(x) where B(x) = g.f. for A000568.

Extensions

a(0)=1 prepended and a(18)-a(19) from Andrew Howroyd, Sep 10 2018

A339590 Irregular triangle read by rows: T(n,k) (n>=2, k>=1) = number of strong tournaments on n nodes with k descents.

Original entry on oeis.org

0, 1, 1, 1, 6, 10, 6, 1, 1, 13, 56, 123, 158, 123, 56, 13, 1, 1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1, 1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 28 2020

Keywords

Examples

			Triangle begins:
0;
1, 1;
1, 6, 10, 6, 1;
1, 13, 56, 123, 158, 123, 56, 13, 1;
1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1;
1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1;
...
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.

Crossrefs

Row sums are A054946.

A354607 Triangular array read by rows: T(n,k) is the number of labeled tournaments on [n] that have exactly k irreducible (strongly connected) components, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 2, 0, 6, 0, 24, 16, 0, 24, 0, 544, 240, 120, 0, 120, 0, 22320, 6608, 2160, 960, 0, 720, 0, 1677488, 315840, 70224, 20160, 8400, 0, 5040, 0, 236522496, 27001984, 3830400, 758016, 201600, 80640, 0, 40320, 0, 64026088576, 4268194560, 366729600, 46448640, 8628480, 2177280, 846720, 0, 362880
Offset: 0

Views

Author

Geoffrey Critzer, Jul 08 2022

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,     1;
  0,     0,    2;
  0,     2,    0,    6;
  0,    24,   16,    0,  24;
  0,   544,  240,  120,   0, 120;
  0, 22320, 6608, 2160, 960,   0, 720;
  ...
		

Crossrefs

Cf. A006125 (row sums), A054946 (column k=1), A000142 (main diagonal).

Programs

  • Mathematica
    nn = 10; G[x_] := Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Table[
    Take[(Range[0, nn]! CoefficientList[Series[1/(1 - y (1 - 1/ G[x])), {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}]

Formula

E.g.f.: 1/(1-y*(1-1/A(x))) where A(x) is the e.g.f. for A006125.
Showing 1-5 of 5 results.