A003030
Number of strongly connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 1, 18, 1606, 565080, 734774776, 3523091615568, 63519209389664176, 4400410978376102609280, 1190433705317814685295399296, 1270463864957828799318424676767488, 5381067966826255132459611681511359329536, 90765788839403090457244128951307413371883494400
Offset: 1
a(3) = 18 (the symbol = denotes a pair of parallel edges): 1->2->3->1 (2 such); 1=2->3->1 (6); 1=2=3->1 (6); 1=2=3=1 (1); 1=2=3 (3).
- Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 428.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 1..58 (first 18 terms from R. W. Robinson)
- Nicholas R. Beaton, Walks obeying two-step rules on the square lattice: full, half and quarter planes, arXiv:2010.06955 [math.CO], 2020.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002.
- Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
- A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- Qipeng Kuang, Ondřej Kuželka, Yuanhong Wang, and Yuyi Wang, Bridging Weighted First Order Model Counting and Graph Polynomials, arXiv:2407.11877 [cs.LO], 2024. See p. 33.
- J. Ostroff, Counting connected digraphs with gradings, Phd. Thesis (2013), Table 1.
- R. W. Robinson, Letter to N. J. A. Sloane, 1980
-
A003030 := proc(n)
option remember;
if n =1 then
1;
else
A054947(n)+add(binomial(n-1,t-1)*procname(t)*A054947(n-t),t=1..n-1) ;
end if;
end proc:
seq(A003030(n),n=1..10) ; # R. J. Mathar, May 10 2016
-
b[1]=1; b[n_]:=b[n]=2^(n*(n-1))-Sum[Binomial[n,j]*2^((n-1)*(n-j))*b[j],{j,1,n-1}];
a[1]=1; a[n_]:=a[n]=b[n]+Sum[Binomial[n-1,j-1]*b[n-j]*a[j],{j,1,n-1}];
Table[a[n],{n,1,15}] (* Vaclav Kotesovec, May 19 2015 *)
-
\\ here B(n) is A054947 as vector.
B(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=2^(n*(n-1))-sum(j=1, n-1, binomial(n, j)*2^((n-1)*(n-j))*v[j])); v}
seq(n)={my(u=B(n), v=vector(n)); v[1]=1; for(n=2, #v, v[n]=u[n]+sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v} \\ Andrew Howroyd, Sep 10 2018
A054947
Enumerates pairs consisting of a strongly connected labeled tournament and an arbitrary labeled tournament.
Original entry on oeis.org
1, 0, 16, 1536, 557056, 731381760, 3517947314176, 63491024068018176, 4399839304395507367936, 1190389701200990489133711360, 1270450770186900638201337522159616, 5381052721259860098970976735257549602816, 90765718885519516263620106778209295628266110976
Offset: 1
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 428, see b_n.
-
A054947 := proc(n)
option remember;
if n = 1 then
1;
else
2^(n*(n-1))-add(binomial(n,t)*2^((n-1)*(n-t))*procname(t),t=1..n-1) ;
end if;
end proc: # R. J. Mathar, May 10 2016
-
a[1] = 1; a[n_] := a[n] = 2^(n(n-1)) - Sum[Binomial[n, j] 2^((n-1)(n-j)) a[j], {j, 1, n-1}];
Array[a, 13] (* Jean-François Alcover, Aug 27 2019 *)
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=2^(n*(n-1))-sum(j=1, n-1, binomial(n, j)*2^((n-1)*(n-j))*v[j])); v} \\ Andrew Howroyd, Sep 09 2018
A051337
Number of strongly connected tournaments on n nodes.
Original entry on oeis.org
1, 1, 0, 1, 1, 6, 35, 353, 6008, 178133, 9355949, 884464590, 152310149735, 48234782263293, 28304491788158056, 30964247546702883729, 63468402142317299907481, 244785748571033855024746438, 1782909084196274276970660380187, 24602074618353524534591008760307017
Offset: 0
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 127, Eq. (5.2.4);
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 523.
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- John W. Moon, Topics on tournaments, Holt, Rinehard and Winston (1968)
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 11 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Raphael Yuster, Vector clique decompositions, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (2019), 1221-1238.
-
m = 20;
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
b[n_] := b[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!);
B[x_] = Sum[b[k] x^k, {k, 0, m}];
A[x_] = 2 - 1/B[x];
A[x] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A000568 *)
A339590
Irregular triangle read by rows: T(n,k) (n>=2, k>=1) = number of strong tournaments on n nodes with k descents.
Original entry on oeis.org
0, 1, 1, 1, 6, 10, 6, 1, 1, 13, 56, 123, 158, 123, 56, 13, 1, 1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1, 1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1
Offset: 2
Triangle begins:
0;
1, 1;
1, 6, 10, 6, 1;
1, 13, 56, 123, 158, 123, 56, 13, 1;
1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1;
1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1;
...
- Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
A354607
Triangular array read by rows: T(n,k) is the number of labeled tournaments on [n] that have exactly k irreducible (strongly connected) components, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 2, 0, 6, 0, 24, 16, 0, 24, 0, 544, 240, 120, 0, 120, 0, 22320, 6608, 2160, 960, 0, 720, 0, 1677488, 315840, 70224, 20160, 8400, 0, 5040, 0, 236522496, 27001984, 3830400, 758016, 201600, 80640, 0, 40320, 0, 64026088576, 4268194560, 366729600, 46448640, 8628480, 2177280, 846720, 0, 362880
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 2, 0, 6;
0, 24, 16, 0, 24;
0, 544, 240, 120, 0, 120;
0, 22320, 6608, 2160, 960, 0, 720;
...
- N. J. A. Sloane, Illustration of first 5 terms
- Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 11 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
-
nn = 10; G[x_] := Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Table[
Take[(Range[0, nn]! CoefficientList[Series[1/(1 - y (1 - 1/ G[x])), {x, 0, nn}], {x, y}])[[i]], i], {i, 1, nn}]
Showing 1-5 of 5 results.
Comments