cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051362 Primes remaining prime if any digit is deleted (zeros allowed).

Original entry on oeis.org

23, 37, 53, 73, 113, 131, 137, 173, 179, 197, 311, 317, 431, 617, 719, 1013, 1031, 1097, 1499, 1997, 2239, 2293, 3137, 4019, 4919, 6173, 7019, 7433, 9677, 10193, 10613, 11093, 19973, 23833, 26833, 30011, 37019, 40013, 47933, 73331, 74177
Offset: 1

Views

Author

Harvey P. Dale, May 31 2000

Keywords

Comments

These might be called "super-prime numbers". - Jaime Gutierrez (jgutierrez(AT)matematicas.net), Sep 27 2007
A proper subset of A034895. - Robert G. Wilson v, Oct 12 2014
The largest known number in this sequence is a 274-digit prime consisting of 163 4s, followed by 80 0s, followed by 31 1s. See the CodeGolf link. - Dmitry Kamenetsky, Feb 26 2021

Crossrefs

Programs

  • Haskell
    import Data.List (inits, tails)
    a051362 n = a051362_list !! (n-1)
    a051362_list = filter p $ drop 4 a000040_list where
       p x = all (== 1) $ map (a010051 . read) $
                 zipWith (++) (inits $ show x) (tail $ tails $ show x)
    -- Reinhard Zumkeller, Dec 17 2011, Aug 24 2011
    
  • Mathematica
    rpQ[n_]:=Module[{idn=IntegerDigits[n]},And@@PrimeQ[FromDigits/@ Subsets[ IntegerDigits[ n],{Length[idn]-1}]]]; Select[Prime[Range[40000]], rpQ]
    prpQ[n_]:=AllTrue[FromDigits/@Table[Delete[IntegerDigits[n],d],{d,IntegerLength[ n]}],PrimeQ]; Select[Prime[Range[7500]],prpQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 27 2020 *)
  • PARI
    is(n)=my(v=Vec(Str(n)),k);for(i=1, #v, k=eval(concat(vecextract(v, 2^#v-1-2^(i-1))));if(!isprime(k),return(0)));isprime(n) \\ Charles R Greathouse IV, Oct 05 2011
    
  • Python
    from sympy import isprime
    def ok(n):
        if n < 10 or not isprime(n): return False
        s = str(n)
        return all(isprime(int(s[:i]+s[i+1:])) for i in range(len(s)))
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Nov 02 2023
  • Sage
    def is_A051362(n):
        prime = is_prime(n)
        if prime:
            L = ZZ(n).digits(10)
            for k in range(len(L)):
                K = L[:]; del K[k]
                prime = is_prime(ZZ(K, base=10))
                if not prime: break
        return prime
    A051362_list = lambda n: filter(is_A051362, range(n))
    A051362_list(77777) # Peter Luschny, Jul 17 2014