A034302 Zeroless primes that remain prime if any digit is deleted.
23, 37, 53, 73, 113, 131, 137, 173, 179, 197, 311, 317, 431, 617, 719, 1499, 1997, 2239, 2293, 3137, 4919, 6173, 7433, 9677, 19973, 23833, 26833, 47933, 73331, 74177, 91733, 93491, 94397, 111731, 166931, 333911, 355933, 477797, 477977
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..118 (terms 1..79 from T. D. Noe, terms 80..103 from Charles R Greathouse IV)
- StackExchange, Deleting any digit yields a prime
Programs
-
Haskell
import Data.List (inits, tails) a034302 n = a034302_list !! (n-1) a034302_list = filter f $ drop 4 a038618_list where f x = all (== 1) $ map (a010051 . read) $ zipWith (++) (inits $ show x) (tail $ tails $ show x) -- Reinhard Zumkeller, Dec 17 2011
-
Mathematica
rpnzQ[n_]:=Module[{idn=IntegerDigits[n]},Count[idn,0]==0 && And@@ PrimeQ[FromDigits/@ Subsets[IntegerDigits[n], {Length[idn]-1}]]]; Select[Prime[Range[40000]],rpnzQ] (* Harvey P. Dale, Mar 24 2011 *)
-
PARI
is(n)=my(d=digits(n),t=2^#d-1); if(vecmin(d)==0, return(0)); for(i=0,#d-1, if(!isprime(fromdigits(vecextract(d,t-2^i))), return(0))); isprime(n) \\ Charles R Greathouse IV, Jun 23 2017
-
Python
from itertools import product from sympy import isprime A034302_list, m = [23, 37, 53, 73], 7 for l in range(1,m-1): # generate all terms less than 10^m for d in product('123456789',repeat=l): for e in product('1379',repeat=2): s = ''.join(d+e) if isprime(int(s)): for i in range(len(s)): if not isprime(int(s[:i]+s[i+1:])): break else: A034302_list.append(int(s)) # Chai Wah Wu, Apr 05 2021
Comments