cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051378 Sum of (1+e)-divisors of n. Let n = Product_i p(i)^r(i) then (1+e)-sigma(n) = Product_i (1 + Sum_{s|r(i)} p(i)^s).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 11, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 44, 31, 42, 31, 56, 30, 72, 32, 35, 48, 54, 48, 91, 38, 60, 56, 66, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 93, 72, 88, 80, 90, 60, 168, 62, 96, 104, 79, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a051378 n = product $ zipWith sum_1e (a027748_row n) (a124010_row n)
       where sum_1e p e = 1 + sum [p ^ d | d <- a027750_row e]
    -- Reinhard Zumkeller, Mar 13 2012
  • Maple
    A051378 := proc(n)
        local a,d,p,e,sp;
        a := 1;
        for d in ifactors(n)[2] do
            p := op(1,d) ;
            e := op(2,d) ;
            sp := 1;
            for s in numtheory[divisors](e) do
                sp := sp+p^s ;
            end do:
            a := a*sp ;
        end do:
        a;
    end proc: # R. J. Mathar, Oct 26 2015
  • Mathematica
    a[1] = 1; a[p_?PrimeQ] = p+1; a[n_] := Times @@ (1 + Sum[First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],sumdiv(f[i,2],d,f[i,1]^d)+1) \\ Charles R Greathouse IV, Nov 22 2011
    

Formula

Multiplicative with a(p^e) = 1 + Sum_{d|e} p^d. - Vladeta Jovovic, Apr 23 2002
a(n) = Sum_{d|n, gcd(d, n/d) = 1} A051377(d). - Daniel Suteu, Nov 01 2022
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 + (1-1/p)*Sum_{k>=2} p^k/(p^(2*k)-1)) = 0.76636964336546210751... . - Amiram Eldar, Oct 31 2023

Extensions

Corrected and extended by Naohiro Nomoto, Apr 12 2001