cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051437 Number of undirected walks of length n+1 on an oriented triangle, visiting n+2 vertices, with n "corners"; the symmetry group is C3. Walks are not self-avoiding.

Original entry on oeis.org

1, 3, 4, 10, 16, 36, 64, 136, 256, 528, 1024, 2080, 4096, 8256, 16384, 32896, 65536, 131328, 262144, 524800, 1048576, 2098176, 4194304, 8390656, 16777216, 33558528, 67108864, 134225920, 268435456, 536887296, 1073741824, 2147516416, 4294967296, 8590000128
Offset: 0

Views

Author

Keywords

Comments

For a way to obtain this sequence from symmetry in quilts, see the Tom Young web page.
Also arises from the enumeration of based polyhedra with exactly two triangular faces [Rademacher]. - N. J. A. Sloane, Apr 24 2020
a(n-1) is the number of linear oriented trees with n arcs (n+1 nodes). - R. J. Mathar, Jun 09 2020

Examples

			For n=3 the walks visit vertices 1212, 1213, 1232, 1231.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,2,-4},{1,3,4},50] (* or *) CoefficientList[ Series[ (1+x-4x^2)/((1-2x)(1-2x^2)),{x,0,50}],x] (* Harvey P. Dale, Jun 06 2011 *)
  • Scheme
    (define (A051437 n) (if (zero? n) 1 (+ (A000079 n) (A077957 (- n 1))))) ;; Antti Karttunen, Dec 29 2013

Formula

a(2n+1) = A007582(n+1). a(2n) = A000302(n).
a(n) = A000079(n) + A077957(n-1). - Antti Karttunen, Dec 29 2013
From Paul Barry, Apr 28 2004: (Start)
Binomial transform is 3^n + Pell(n) = (A000244(n) + A000129(n)).
G.f.: (1+x-4*x^2)/((1-2*x)(1-2*x^2));
a(n) = 2^n + 2^(n/2)*(1-(-1)^n)/(2*sqrt(2)). (End)
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3); a(0)=1, a(1)=3, a(2)=4. - Harvey P. Dale, Jun 06 2011
a(n) = 2*a(n-2) + 2^(n-1), a(0)=1, a(1)=3. - Yuchun Ji, Aug 12 2020
E.g.f.: cosh(2*x) + sinh(2*x) + sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, Jun 03 2022

Extensions

More terms from Harvey P. Dale, Jun 06 2011