cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A033844 a(n) = prime(2^n).

Original entry on oeis.org

2, 3, 7, 19, 53, 131, 311, 719, 1619, 3671, 8161, 17863, 38873, 84017, 180503, 386093, 821641, 1742537, 3681131, 7754077, 16290047, 34136029, 71378569, 148948139, 310248241, 645155197, 1339484197, 2777105129, 5750079047, 11891268401, 24563311309, 50685770167, 104484802057, 215187847711
Offset: 0

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998

Keywords

Comments

a(n) is the smallest number m such that pi(m)=d(m)^n, where d(m) is number of positive divisors of m (the proof is easy). - Farideh Firoozbakht, Jun 06 2005

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Jun 09 2000

A051439 a(n) = prime(2^n + 1).

Original entry on oeis.org

3, 5, 11, 23, 59, 137, 313, 727, 1621, 3673, 8167, 17881, 38891, 84047, 180511, 386117, 821647, 1742539, 3681149, 7754081, 16290073, 34136059, 71378603, 148948141, 310248251, 645155227, 1339484207, 2777105131, 5750079077
Offset: 0

Views

Author

Keywords

Examples

			a(0) = prime(2^0+1) = prime(2) = 3,
a(1) = prime(2+1) = prime(3) = 5,
a(2) = prime(2^2+1) = prime(5) = 11,
a(3) = prime(2^3+1) = prime(9) = 23, and so on. - _N. J. A. Sloane_, Dec 09 2020
		

Crossrefs

Programs

  • Mathematica
    Prime[2^Range[0,30]+1] (* Harvey P. Dale, Jan 19 2014 *)

Extensions

More terms from Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

A018249 a(n) = prime(2^n)-1.

Original entry on oeis.org

1, 2, 6, 18, 52, 130, 310, 718, 1618, 3670, 8160, 17862, 38872, 84016, 180502, 386092, 821640, 1742536, 3681130, 7754076, 16290046, 34136028, 71378568, 148948138, 310248240, 645155196, 1339484196, 2777105128, 5750079046, 11891268400, 24563311308, 50685770166, 104484802056
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A033844(n) - 1.
a(n) = A051440(n) - 2. - Amiram Eldar, Jul 11 2025

Extensions

More terms from Amiram Eldar, Jul 11 2025

A051440 a(n) = prime(2^n) + 1.

Original entry on oeis.org

3, 4, 8, 20, 54, 132, 312, 720, 1620, 3672, 8162, 17864, 38874, 84018, 180504, 386094, 821642, 1742538, 3681132, 7754078, 16290048, 34136030, 71378570, 148948140, 310248242, 645155198, 1339484198, 2777105130, 5750079048, 11891268402, 24563311310, 50685770168, 104484802058
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Prime[2^n] + 1; Array[a, 33, 0] (* Amiram Eldar, Jul 11 2025 *)
  • PARI
    a(n) = prime(2^n) + 1; \\ Amiram Eldar, Jul 11 2025

Formula

a(n) = A033844(n) + 1.
a(n) = A018249(n) + 2. - Amiram Eldar, Jul 11 2025

Extensions

More terms from Amiram Eldar, Jul 11 2025

A181363 1 followed by the primes, interleaved recursively.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 7, 3, 11, 2, 13, 5, 17, 1, 19, 7, 23, 3, 29, 11, 31, 2, 37, 13, 41, 5, 43, 17, 47, 1, 53, 19, 59, 7, 61, 23, 67, 3, 71, 29, 73, 11, 79, 31, 83, 2, 89, 37, 97, 13, 101, 41, 103, 5, 107, 43, 109, 17, 113, 47, 127, 1, 131, 53, 137, 19, 139, 59, 149, 7, 151, 61
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2010

Keywords

Comments

a(2*n-1) = A008578(n); a(2*n+1) = A000040(n);
a((2*n-1)*2^k) = A008578(n), k >= 0;
a(2^k) = 1, k >= 0; a(2^k - 1) = A051438(k), k > 0.

Examples

			Initial values, seen as a binary tree:
................................. 1
................ 1 _______________________________ 2
........ 1 _____________ 3 .............. 2 ______________ 5
... 1 _____ 7 ..... 3 ______ 11 .... 2 ______ 13 .... 5 ______ 17
.. 1__19...7__23...3__29...11__31...2__37...13__41...5__43...17__47
		

Programs

  • Haskell
    import Data.List (transpose)
    a181363 n = a181363_list !! (n-1)
    a181363_list = concat $ transpose [a008578_list, a181363_list]
    -- Reinhard Zumkeller, Mar 22 2014, Oct 20 2011, Oct 16 2010

Formula

a(n) = if even n then a(n/2) else A008578((n+1)/2).
a(n) = A008578(A025480(n-1)+1). - Reinhard Zumkeller, Mar 22 2014

A325122 Sum of binary digits of the prime indices of n, minus Omega(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 0, 1, 2, 1, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 3, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 1, 1, 1, 2, 0, 0, 2, 1, 2, 2, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 2, 1, 0, 2, 3, 0, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

The sum of binary digits of an integer is the number of 1's in its binary representation. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Positions of zeros are A318400.
Other totally additive sequences: A056239, A302242, A318994, A318995, A325033, A325034, A325120, A325121.

Programs

  • Mathematica
    Table[Sum[pr[[2]]*(DigitCount[PrimePi[pr[[1]]],2,1]-1),{pr,If[n==1,{},FactorInteger[n]]}],{n,100}]

Formula

Totally additive with a(prime(n)) = A048881(n).

A050298 Triangle read by rows: T(n,k) = p(r), where r is the (n-k+1)-th number such that A001222(r+1) = k, and p(r) is the r-th prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 13, 19, 31, 47, 29, 23, 59, 83, 127, 37, 41, 67, 149, 211, 307, 53, 43, 101, 167, 353, 499, 709, 61, 71, 103, 241, 401, 823, 1153, 1613, 79, 73, 109, 257, 587, 937, 1873, 2647, 3659, 107, 89, 179, 277, 607, 1319, 2113, 4201, 5843, 8147
Offset: 1

Views

Author

Alford Arnold, Apr 09 2003

Keywords

Comments

The first column is A055003 and the main diagonal is A051438. When viewed as a sequence, this is a permutation of the prime numbers.

Examples

			a(14) = T(5,4) = p(23) = 83 because A001222(23+1) = A001222(24) = 4 since 24 has four prime factors, and this is the (5-4+1) = 2nd number with A001222 = 4.
The table begins:
2
3  5
7  11 17
13 19 31 47
29 23 59 83  127
37 41 67 149 211 307
...
		

Crossrefs

Programs

  • Maple
    with(numtheory): A050298ind := proc(n,k) option remember: local f,m: if(n=k)then return 2^n-1: fi: for m from procname(n-1,k)+1 do if(bigomega(m+1)=k)then return m: fi: od: end: for n from 1 to 6 do seq(ithprime(A050298ind(n,k)),k=1..n);od; # Nathaniel Johnston, May 07 2011

Extensions

Better name and extended by Nathaniel Johnston, May 07 2011
Showing 1-7 of 7 results.