cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051448 Sum of prime divisors of n (with multiplicity) is a square.

Original entry on oeis.org

1, 4, 14, 20, 24, 27, 39, 46, 55, 66, 94, 98, 140, 152, 155, 158, 168, 171, 183, 186, 189, 200, 203, 225, 240, 255, 256, 270, 272, 288, 290, 291, 295, 299, 306, 323, 324, 334, 344, 348, 354, 363, 387, 446, 455, 506, 539, 546, 578, 579, 583, 615, 650, 656, 695
Offset: 1

Views

Author

Joe K. Crump (joecr(AT)carolina.rr.com)

Keywords

Comments

Numbers k such that A001414(k) is a perfect square. - Michel Lagneau, May 28 2012

Examples

			a(2) = 14 because 14 = 2*7 and 2 + 7 = 3^2.
		

Programs

  • Maple
    A:= proc(n) local e, j; e := ifactors(n)[2]: add (e[j][1]*e[j][2], j=1..nops(e)) end:
    for m from 1 to 1000 do: m2:=sqrt(A(m)):if m2=floor(m2) then printf(`%d, `, m):else fi:od: # Michel Lagneau, May 28 2012
    # second Maple program:
    q:= n-> issqr(add(i[1]*i[2], i=ifactors(n)[2])):
    select(q, [$1..1000])[];  # Alois P. Heinz, Jan 24 2021
  • Mathematica
    lst = {}; Do[ww = Transpose[FactorInteger[k]]; w = ww[[1]].ww[[2]]; If[IntegerQ[Sqrt[w]], AppendTo[lst, k]], {k, 1, 1000}]; lst (* Michel Lagneau, May 28 2012 *)
    Select[Range[700],IntegerQ[Sqrt[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ #]]]]]&] (* Harvey P. Dale, Dec 12 2018 *)

Extensions

More terms from James Sellers, Sep 08 2000