cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051450 Number of positive rational knots with 2n+1 crossings.

Original entry on oeis.org

1, 2, 5, 12, 30, 76, 195, 504, 1309, 3410, 8900, 23256, 60813, 159094, 416325, 1089648, 2852242, 7466468, 19546175, 51170460, 133962621, 350713222, 918170280, 2403786672, 6293172025, 16475700746, 43133883845, 112925875764
Offset: 1

Views

Author

Alexander Stoimenow (stoimeno(AT)math.toronto.edu)

Keywords

Comments

The number of positive rational knots with even crossing number is zero.
a(n) = (1/2)*(coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) = 1+x^n+x^(2n)); see A192464. Reductions of polynomials by substitutions such as x^2->x+1 are introduced at A192232. - Clark Kimberling, Jul 01 2011

Examples

			a(4) = 12 because we have 12 positive rational knots with 9 crossings: 9_1 to 9_7, 9_9, 9_10, 9_13, 9_18 and 9_23 (in Alexander-Briggs notation).
		

Crossrefs

Cf. A000045.

Programs

  • Magma
    [(Fibonacci(2*n)+Fibonacci(n))/2: n in [1..30]]; // Vincenzo Librandi, Nov 01 2014
  • Maple
    A051450 := proc(n)
        (combinat[fibonacci](n)+combinat[fibonacci](2*n))/2 ;
    end proc:
    seq(A051450(n),n=1..10) ; # R. J. Mathar, Nov 02 2021
  • Mathematica
    LinearRecurrence[{4, -3, -2, 1}, {1, 2, 5, 12}, 30] (* Jean-François Alcover, Aug 28 2023 *)
  • PARI
    Vec(x*(2*x-1)/((x^2-3*x+1)*(x^2+x-1)) + O(x^100)) \\ Colin Barker, Nov 01 2014
    

Formula

G.f. (version 1): -x + (x/2)*(1/(1-x/(4*(1-x)^2) + x/(4*(1+x)^2)) + 1/(1-x^2/(1-x^4))).
G.f. (version 2): x*(1-2*x)/((1-x-x^2)*(1-3*x+x^2)). - N. J. A. Sloane, Jan 21 2001
Binomial transform of Fibonacci(n)*(1-(-1)^n)/2. Binomial transform of (Fibonacci(n) + Fibonacci(-n))/2. - Paul Barry, Apr 23 2004
Let phi be the golden ratio (1+sqrt(5))/2. Then a(n)= (phi^n - (-phi)^(-n) + (1+phi)^n - (1+phi)^(-n))/(2*sqrt(5)) or a(n) = floor((1 + phi^n + (1+phi)^n)/(2*sqrt(5))). - Herbert Kociemba, May 12 2004
Also, number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1, 2, ..., n, s(0) = 1, s(n) = 2. a(n) = (2/5)*Sum_{k=1..4} sin(Pi*k/5)*sin(2*Pi*k/5)*(1+2*cos(Pi*k/5))^n. - Herbert Kociemba, Jun 07 2004
a(n) = (Fibonacci(2*n) + Fibonacci(n))/2. - Vladeta Jovovic, Jul 17 2004
Convolution of F(n) and F(2n-1). a(n) = Sum_{k=0..n} F(2k-1)*F(n-k). - Paul Barry, Jul 26 2004
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4). - Colin Barker, Nov 01 2014

Extensions

More terms from James Sellers, Dec 09 1999