cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001224 If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.

Original entry on oeis.org

1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
Offset: 1

Views

Author

Keywords

Comments

Arises from a problem of finding the number of inequivalent ways to pack a 2 X n rectangle with dominoes. The official solution is given in A060312. The present sequence gives the correct answer provided n != 2, when it gives 2 instead of 1. To put it another way, the present sequence gives the number of tilings of a 2 x n rectangle with dominoes when left-to-right mirror images are not regarded as distinct. - N. J. A. Sloane, Mar 30 2015
Also the number of inequivalent ways to tile a 2 X n rectangle with a combination of squares with sides 1 or 2. - John Mason, Nov 30 2022
Slavik V. Jablan observes that this is also the number of generating rational knots and links. See reference.
Also the number of distinct binding configurations on an n-site one-dimensional linear lattice, where the molecules cannot touch each other. This number determines the order of recurrence for the partition function of binding to a two-dimensional n X m lattice.
From Petros Hadjicostas, Jan 08 2018: (Start)
Consider Christian G. Bower's theory of transforms given in a weblink below. For each positive integer k and each input sequence (b(n): n>=1) with g.f. B(x) = Sum_{n>=1} b(n)*x^n, let (a_k(n): n>=1) = BIK[k](b(n): n>=1). (We thus change some of the notation in Bower's weblink.) Here, BIK[k] is the "reversible, indistinct, unlabeled" transform for k boxes.
If BIK[k](x) = Sum_{n>=1} a_k(n)*x^n is the g.f. of the output sequence, then it can be proved that BIK[k](x) = (B(x)^k + B(x^2)^{k/2})/2, when k is even, and = B(x)*BIK[k-1](x), when k is odd. (We assume BIK[0](x) = 1.)
If (a(n): n>=1) = BIK(b(n): n>=1) with g.f. BIK(x) = 1 + Sum_{n>=1} a(n)*x^n, then BIK(x) = 1 + Sum_{k>=1} BIK[k](x). (The addition of the extra 1 in the g.f. seems arbitrary.) We then get BIK(x) = 1 + (1/2)*(B(x)/(1 - B(x)) + (B(x) + B(x^2))/(1 - B(x^2))).
For this sequence, the input sequence satisfies b(1) = b(2) = 1 and b(n) = 0 for n >= 3. Hence, B(x) = x + x^2 and BIK(x) = (1+x)*(1-x-x^3)/((1-x-x^2)*(1-x^2-x^4)), which equals Christian G. Bower's g.f. in the formula section below. (End)

Examples

			From _Petros Hadjicostas_, Jan 08 2018: (Start)
We give some examples to explain _Christian G. Bower's theory of transforms given in the weblink above. We have boxes of two sizes here: boxes that can hold one ball and boxes that can hold two balls. (This is because we want the BIK transform of x + x^2. See the comments above.) Two boxes of the same size are considered identical (indistinct and unlabeled). We place the boxes in a line that can be read in either direction. Here, a(n) = total number of ways of placing such boxes in such a line so that the total number of balls in the boxes is n.
When we have 4 balls in total inside the boxes, we have the following configurations of boxes in a line that can be read in either direction: 1111, 121, 211, and 22. (Note that 211 = 112.) Hence, a(4) = 4.
When n = 5, we have the following configurations of boxes: 11111, 2111, 1211, 221, and 212. Hence, a(5) = 5.
When n = 6, we have: 111111, 21111, 12111, 11211, 2211, 2121, 2112, 1221, and 222. Hence, a(6) = 9. (End)
		

References

  • S. Golomb, Polyominoes, Princeton Univ. Press 1994.
  • S. Jablan S. and R. Sazdanovic, LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A060312, A068928 and A102526.
Cf. A000045.

Programs

  • Magma
    [(1/2)*((Fibonacci(n+1))+Fibonacci(((n+3+(-1)^n) div 2))): n in [1..40]]; // Vincenzo Librandi, Nov 23 2014
  • Maple
    # Maple code for A060312 and A001224 from N. J. A. Sloane, Mar 30 2015
    with(combinat); F:=fibonacci;
    f:=proc(n) option remember;
    if n=2 then 1 # change this to 2 to get A001224
    elif (n mod 2) = 0 then (F(n+1)+F(n/2+2))/2;
    else (F(n+1)+F((n+1)/2))/2; fi; end;
    [seq(f(n),n=1..50)];
    A001224:=-(-1-z+2*z**2+z**3+z**4+z**5)/(z**4+z**2-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[5,4,2,2,1,1]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [1,2,-1,0,-1,-1][i] else 0 fi)^n)[1,6]: seq(a(n), n=1..38); # Alois P. Heinz, Aug 26 2008
  • Mathematica
    a[n_?EvenQ] := (Fibonacci[n + 1] + Fibonacci[n/2 + 2])/2; a[n_?OddQ] := (Fibonacci[n + 1] + Fibonacci[(n + 1)/2])/2; Table[a[n], {n, 38}] (* Jean-François Alcover, Oct 06 2011, after formula *)
    LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 2, 2, 4, 5, 9}, 38] (* Jean-François Alcover, Sep 21 2017 *)

Formula

a(2n+1) = A051450(n+1) and a(2n) = A005207(n+1).
From Christian G. Bower, May 09 2000: (Start)
G.f.: (2-(x+x^2)^2)/(2*(1-x-x^2)) + (1+x+x^2)*(x^2+x^4)/(2*(1-x^2-x^4)).
"BIK" transform of x+x^2. (End)
If F(n) is the n-th Fibonacci number, then a(2n) = (F(2n+1) + F(n+2))/2 and a(2n+1) = (F(2n+2) + F(n+1))/2.
G.f.: (1+x)*(1-x-x^3)/((1-x-x^2)*(1-x^2-x^4)). (See the Comments section above.) - Petros Hadjicostas, Jan 08 2018
From Manfred Boergens, Aug 25 2025: (Start)
a(n) = (Fibonacci(n+1) + Fibonacci(floor((n+3+(-1)^n)/2)))/2.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6). (End)

Extensions

More terms from Christian G. Bower, May 09 2000
Typo in references corrected by Jernej Azarija, Oct 23 2013
Edited by N. J. A. Sloane, Mar 30 2015

A056014 a(n) = (Fibonacci(2n-1) - Fibonacci(n+1))/2.

Original entry on oeis.org

0, 0, 0, 1, 4, 13, 38, 106, 288, 771, 2046, 5401, 14212, 37324, 97904, 256621, 672336, 1760997, 4611642, 12075526, 31617520, 82781215, 216732890, 567428401, 1485570024, 3889310328, 10182407328, 26657986681, 69791674108
Offset: 0

Views

Author

Asher Auel, Jun 06 2000

Keywords

Comments

With a(0)=0, a(1)=1, a(2)=1, a(3)=2, this recurrence produces a(n)=A000045(n) (Fibonacci numbers).
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 4. - Herbert Kociemba, Jun 16 2004

Crossrefs

a(1-2n)=A059512(2n), a(-2n)=A027994(2n-1).

Programs

  • Magma
    I:=[0, 0, 0, 1]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
  • Mathematica
    Table[(Fibonacci[2n-1]-Fibonacci[n+1])/2,{n,0,40}]  (* Harvey P. Dale, Mar 24 2011 *)
    LinearRecurrence[{4,-3,-2,1},{0,0, 0,1},40] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n)=(fibonacci(2*n-1)-fibonacci(n+1))/2
    

Formula

a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4), a(0)=a(1)=a(2)=0, a(3)=1.
Convolution of Fibonacci numbers F(n) with F(2n). - Benoit Cloitre, Jun 07 2004
G.f.: x^3/((1 - x - x^2)*(1 - 3*x + x^2)). - Herbert Kociemba, Jun 16 2004
Binomial transform of x^3/(1-3x^2+x^4), or (essentially) F(2n) with interpolated zeros. a(n)=sum{k=0..n, binomial(n, k)((3/2-sqrt(5)/2)^(k/2)((sqrt(5)/20+1/4)(-1)^k-sqrt(5)/20-1/4)+ (sqrt(5)/2+3/2)^(k/2)((sqrt(5)/20-1/4)(-1)^k-sqrt(5)/20+1/4))}. - Paul Barry, Jul 26 2004
Convolution of the powers of 2 (A000079) with the number of positive rational knots with 2n+1 crossings (A051450), with three leading zeros. - Graeme McRae, Jun 28 2006
a(n) = (A001519(n) - A000045(n+1))/2. - R. J. Mathar, Jun 24 2011
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A094966(k-1) (Othsuka, 2024). - Amiram Eldar, Feb 29 2024

A078477 Number of rational knots with n crossings and unknotting number = 1 (chiral pairs counted only once).

Original entry on oeis.org

1, 1, 1, 3, 3, 6, 7, 15, 15, 30, 31, 63, 63, 126, 127, 255, 255, 510, 511, 1023, 1023, 2046, 2047, 4095, 4095, 8190, 8191, 16383, 16383, 32766, 32767, 65535, 65535, 131070, 131071, 262143, 262143, 524286, 524287, 1048575, 1048575, 2097150, 2097151
Offset: 3

Views

Author

Ralf Stephan, Jan 03 2003

Keywords

Comments

From Alexander Adamchuk, Nov 16 2009: (Start)
For n>1 a(2n+1) = 2^(n-1) - 1 = A000225(n-1).
For n>1 a(4n) = a(4n+1) - 1 = 2^(2n-1) - 2.
For n>0 a(4n+2) = a(4n+3) = 2^(2n) - 1. (End)

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 x^7 + 2 x^6 - x^5 + x^3 - x^2 + x + 1) / ((x-1) (x+1) (x^2+1) (2 x^2-1)), {x, 0, 50}], x] (* Vincenzo Librandi, May 17 2013 *)
  • PARI
    Vec(x^3*(1+x-x^2+x^3-x^5+2*x^6+2*x^7)/((1-x)*(1+x)*(1+x^2)*(1-2*x^2)) + O(x^60)) \\ Colin Barker, Dec 26 2015

Formula

G.f.: x^3*(1+x-x^2+x^3-x^5+2*x^6+2*x^7) / ((1-x)*(1+x)*(1+x^2)*(1-2*x^2)).
a(n) = 2*a(n-2)+a(n-4)-2*a(n-6) for n>10. - Colin Barker, Dec 26 2015

A102526 Antidiagonal sums of Losanitsch's triangle (A034851).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127, 195, 322, 504, 826, 1309, 2135, 3410, 5545, 8900, 14445, 23256, 37701, 60813, 98514, 159094, 257608, 416325, 673933, 1089648, 1763581, 2852242, 4615823, 7466468, 12082291, 19546175, 31628466
Offset: 0

Views

Author

Gerald McGarvey, Feb 24 2005

Keywords

Comments

This is an interleaving of A005207 and A051450. Thus a(2*m) = A005207(m) = (F(2*m-1) + F(m+1)) / 2, a(2*m - 1) = A051450(m) = (F(2*m) + F(m)) / 2 where F() are Fibonacci numbers (A000045). - Max Alekseyev, Jun 28 2006
The Kn11(n) and Kn21(n) sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal a(n), while the Kn12(n) and Kn22(n) sums equal (a(n+2)-A000012(n)) and the Kn13(n) and Kn23(n) sums equal (a(n+4)-A008619(n+4)). - Johannes W. Meijer, Jul 14 2011
a(n) is the number of homeomorphically irreducible caterpillars with n + 3 edges. - Christian Barrientos, Sep 12 2020

References

  • Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.

Crossrefs

Cf. A034851.
Essentially the same as A001224, A060312 and A068928.

Programs

  • Maple
    with(combinat): A102526 :=proc(n): if type(n, even) then (fibonacci(n+1)+fibonacci(n/2+2))/2 else (fibonacci(n+1)+fibonacci((n+1)/2))/2 fi: end: seq(A102526(n), n=0..38); # Johannes W. Meijer, Jul 14 2011
  • Mathematica
    LinearRecurrence[{1, 2, -1, 0, -1, -1}, {1, 1, 2, 2, 4, 5}, 40] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    Vec((1+x)*(1-x-x^3)/(x^2+x-1)/(x^4+x^2-1)+O(x^99)) \\ Charles R Greathouse IV, Nov 17 2017
    
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; -1,-1,0,-1,2,1]^n*[1;1;2;2;4;5])[1,1] \\ Charles R Greathouse IV, Nov 17 2017

Formula

G.f.: -(1+x)*(x^3+x-1) / ( (x^2+x-1)*(x^4+x^2-1) ). - R. J. Mathar, Nov 09 2013
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-5) - a(n-6). - Wesley Ivan Hurt, Sep 17 2020

A192464 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n).

Original entry on oeis.org

2, 4, 7, 16, 38, 95, 242, 624, 1619, 4216, 11002, 28747, 75170, 196652, 514607, 1346880, 3525566, 9229063, 24160402, 63250168, 165586907, 433505384, 1134920882, 2971243731, 7778788418, 20365086100, 53316412567, 139584058864, 365435613974, 956722540271
Offset: 1

Views

Author

Clark Kimberling, Jul 01 2011

Keywords

Comments

For an introduction to reductions of polynomials by substitutions such as x^2->x+1, see A192232. The coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) = 1 + x^n + x^(2n) is 2*A051450.

Examples

			The first four polynomials p(n,x) and their reductions are as follows:
p(1,x) = 1 + x   + x^2 ->  2 +  2x
p(2,x) = 1 + x^2 + x^4 ->  4 +  4x
p(3,x) = 1 + x^3 + x^6 ->  7 + 10x
p(4,x) = 1 + x^4 + x^8 -> 16 + 24x.
From these, read
A192464 = (2, 4, 7, 16, ...) and 2*A051450 = (2, 4, 10, 24, ...).
		

Crossrefs

Programs

  • Mathematica
    Remove["Global`*"];
    q[x_] := x + 1; p[n_, x_] := 1 + x^n + x^(2 n);
    Table[Simplify[p[n, x]], {n, 1, 5}]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
       x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}]
    (* A192464 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}]
    (* 2*A051450 *)
    Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}]
    (* A051450 *)
    Table[1-Fibonacci[n]+Fibonacci[1+n]-Fibonacci[2n]+Fibonacci[1+2n], {n, 1, 29}]
    (* Friedjof Tellkamp, Nov 22 2021 *)

Formula

G.f.: -x*(3*x^4-7*x^3-x^2+6*x-2)/((x-1)*(x^2-3*x+1)*(x^2+x-1)). - Colin Barker, Nov 12 2012
a(n) = 1 - Fibonacci(n) + Fibonacci(1+n) - Fibonacci(2n) + Fibonacci(1+2n). - Friedjof Tellkamp, Nov 22 2021

A062135 Odd-numbered columns of Losanitsch triangle A034851 formatted as triangle with an additional first column.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 6, 3, 1, 0, 3, 10, 12, 4, 1, 0, 3, 19, 28, 20, 5, 1, 0, 4, 28, 66, 60, 30, 6, 1, 0, 4, 44, 126, 170, 110, 42, 7, 1, 0, 5, 60, 236, 396, 365, 182, 56, 8, 1, 0, 5, 85, 396, 868, 1001, 693, 280, 72, 9, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Comments

Because the sequence of column m=2*k, k >= 1, of A034851 is the partial sum sequence of the one of column m=2*k-1 the present triangle is essentially Losanitsch's triangle A034851.
Row sums give A051450 with A051450(0) := 1. Column sequences (without leading zeros) are for m=0..6: A000007, A008619, A005993, A005995, A018211, A018213, A062136.

Examples

			Triangle begins:
  {1};
  {0,1};
  {0,1,1};
  {0,2,2,1};
  ...
Pe(4,x^2)=1+6*x^2+x^4.
		

Crossrefs

Programs

  • Mathematica
    t[n_?EvenQ, k_?OddQ] := Binomial[n, k]/2; t[n_, k_] := (Binomial[n, k] + Binomial[Quotient[n, 2], Quotient[k, 2]])/2; Flatten[Table[t[n - 1 + m, n - m], {n, 0, 12}, {m, 0, n}]] (* Michael De Vlieger, Sep 28 2024, after Jean-François Alcover at A034851  *)

Formula

T(n, m) = A034851(n-1+m, n-m), n >= m >= 0; A034851(n-1, n) := 0, n >= 1, A034851(-1, 0) := 1.
T(n, m) = 0 if n= 1; T(n, m) = T(n-1, m)+sum(T(k, m-1), k=m-1..n-1) if n+m even and T(n, m) = T(n-1, m)+sum(T(k, m-1), k=m-1..n-1)-binomial((n+m-3)/2, m-1) if n+m odd, n >= m >= 1.
G.f. for column m: x^m*Pe(m, x^2)/(((1-x)^(2*m))*(1+x)^m), m >= 0, with Pe(m, x^2)= sum(A034839(m, k)*x^(2*k), k=0..floor(n/2)), the row polynomial of array A034839 (even-indexed entries of the rows of Pascal's triangle).

Extensions

More terms from Michael De Vlieger, Sep 28 2024

A094039 Binomial transform of (Jacobsthal(n) + 2^n*Jacobsthal(-n))/2.

Original entry on oeis.org

0, 1, 2, 6, 16, 46, 132, 386, 1136, 3366, 10012, 29866, 89256, 267086, 799892, 2396946, 7185376, 21545206, 64613772, 193797626, 581305496, 1743741726, 5230875652, 15691927906, 47074385616, 141220360646, 423655489532
Offset: 0

Views

Author

Paul Barry, Apr 23 2004

Keywords

Comments

Binomial transform of Jacobsthal(n)(1-(-1)^n)/2.
Starting with "1" = A001045 convolved with A025192: i.e., (1, 2, 6, 16, 46, ...) = (1, 1, 3, 5, 11, ...) * (1, 2, 6, 18, 54, ...). - Gary W. Adamson, May 10 2013

Crossrefs

Formula

G.f.: x(1-2x-x^2)/((1+x)(1-2x)(1-3x))
a(n) = 3^n/6 - (-1)^n/6 + 2^n/6 - 0^n/6.

A094038 Binomial transform of (Pell(-n)+Pell(n))/2.

Original entry on oeis.org

0, 1, 2, 8, 24, 84, 280, 960, 3264, 11152, 38048, 129920, 443520, 1514304, 5170048, 17651712, 60266496, 205762816, 702517760, 2398545920, 8189147136, 27959497728, 95459694592, 325919784960, 1112759746560, 3799199420416
Offset: 0

Views

Author

Paul Barry, Apr 23 2004

Keywords

Comments

Also binomial transform of Pell(n)(1-(-1)^n)/2.
a(n+2) = A088013(n+1) + A007070(n) - Creighton Dement, Oct 23 2004

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,0,-8,4},{0,1,2,8},30] (* Harvey P. Dale, Jan 01 2016 *)

Formula

G.f.: x(1-2x)/((1-2x^2)(1-4x+2x^2));
a(n)=(sqrt(2)/8)((2+sqrt(2))^n-(2-sqrt(2))^n+(sqrt(2))^n-(-sqrt(2))^n).
Showing 1-8 of 8 results.