A051599 Rows of triangle formed using Pascal's rule except begin and end n-th row with (n+1)st prime.
2, 3, 3, 5, 6, 5, 7, 11, 11, 7, 11, 18, 22, 18, 11, 13, 29, 40, 40, 29, 13, 17, 42, 69, 80, 69, 42, 17, 19, 59, 111, 149, 149, 111, 59, 19, 23, 78, 170, 260, 298, 260, 170, 78, 23, 29, 101, 248, 430, 558, 558, 430, 248, 101, 29, 31, 130, 349, 678, 988, 1116, 988, 678, 349, 130, 31
Offset: 0
Examples
Triangle begins: 2; 3, 3; 5, 6, 5; 7, 11, 11, 7; 11, 18, 22, 18, 11; 13, 29, 40, 40, 29, 13; 17, 42, 69, 80, 69, 42, 17; 19, 59, 111, 149, 149, 111, 59, 19; 23, 78, 170, 260, 298, 260, 170, 78, 23; 29, 101, 248, 430, 558, 558, 430, 248, 101, 29; 31, 130, 349, 678, 988, 1116, 988, 678, 349, 130, 31;
Links
Programs
-
Haskell
a051599 n k = a051599_tabl !! n !! k a051599_row n = a051599_tabl !! n a051599_tabl = map fst $ iterate f ([2], a001223_list) where f (row, (d:ds)) = (zipWith (+) ([d] ++ row) (row ++ [d]), ds) -- Reinhard Zumkeller, Nov 23 2012
-
Mathematica
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = Prime[n + 1], m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t (* T. D. Noe, Jul 31 2013 *)
Extensions
Corrected by James Sellers, Dec 15 1999