A051631 Triangle formed using Pascal's rule except begin and end n-th row with n-1.
-1, 0, 0, 1, 0, 1, 2, 1, 1, 2, 3, 3, 2, 3, 3, 4, 6, 5, 5, 6, 4, 5, 10, 11, 10, 11, 10, 5, 6, 15, 21, 21, 21, 21, 15, 6, 7, 21, 36, 42, 42, 42, 36, 21, 7, 8, 28, 57, 78, 84, 84, 78, 57, 28, 8, 9, 36, 85, 135, 162, 168, 162, 135, 85, 36, 9
Offset: 0
Examples
Triangle begins -1; 0, 0; 1, 0, 1; 2, 1, 1, 2; 3, 3, 2, 3, 3; 4, 6, 5, 5, 6, 4; ...
Links
Crossrefs
Cf. A007318.
Programs
-
Haskell
a051631 n k = a051631_tabl !! n !! k a051631_row n = a051631_tabl !! n a051631_list = concat a051631_tabl a051631_tabl = iterate (\row -> zipWith (+) ([1] ++ row) (row ++[1])) [-1] -- Reinhard Zumkeller, Nov 13 2011
-
Magma
/* As triangle */ [[Binomial(n+2,k+1) - 3*Binomial(n,k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jan 11 2019
-
Mathematica
Clear[t]; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; t[n_, 0] := n-1; t[n_, n_] := n-1; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 11 2013 *)
Formula
T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n, T(n,0) = T(n,n) = n - 1.
T(n,k) = C(n+2,k+1) - 3*C(n,k). - Charlie Neder, Jan 10 2019
Extensions
Definition modified and keyword tabl added by Reinhard Zumkeller, Nov 13 2011
Comments