cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024483 a(n) = binomial(2*n, n) mod binomial(2*n-2, n-1).

Original entry on oeis.org

0, 2, 10, 42, 168, 660, 2574, 10010, 38896, 151164, 587860, 2288132, 8914800, 34767720, 135727830, 530365050, 2074316640, 8119857900, 31810737420, 124718287980, 489325340400, 1921133836440, 7547311500300, 29667795388452, 116686713634848
Offset: 2

Views

Author

Keywords

Comments

Apart from its root term -1: central terms of the triangle in A051631: a(n) = A051631(2*(n-1), n-1). - Reinhard Zumkeller, Nov 13 2011
Define an array m(i,j) by m(1,j)=m(j,1)=j*(j+1)/2 for j=0,1,2,3,... and m(i,j) = m(i,j-1) + m(i-1,j+1); the diagonal m(k,k) for k=1,2,3... gives the numbers in this sequence. - J. M. Bergot, May 02 2012
The central terms of triangle A051631 (including the root term -1) are given by (n-1)*(n+1)*Gamma(2*n+1)/Gamma(n+2)^2 with n >= 0. - Peter Luschny, Nov 24 2013
Index the sequence from n=0 so that a(0)=1, a(1)=0, a(2)=2, a(3)=10, ... a(n) is the number of walks using steps U=(1,1) and D=(1,-1) from the origin to (2n,0) that rise above and dip below the x axis. a(2) = 2 because we have: DUUD and UDDU. - Geoffrey Critzer, Jan 11 2014

Crossrefs

Programs

  • Haskell
    a024483 n = a051631 (2*(n-1)) (n-1) -- Reinhard Zumkeller, Nov 13 2011
    
  • Maple
    seq((n-1)*binomial(2*n, n)/(n+1), n=1..25); # Zerinvary Lajos, Feb 28 2007
  • Mathematica
    nn=20; d=(1-(1-4x)^(1/2))/(2x); Drop[CoefficientList[Series[1/(1-2x d)-2(d-1), {x,0,nn}],x],1] (* Geoffrey Critzer, Jan 11 2014 *)
    Table[Mod[Binomial[2 n, n], Binomial[2 n - 2, n - 1]], {n, 2, 26}] (* Michael De Vlieger, Sep 13 2016 *)
  • Sage
    def a(n): return n*(n-2)*factorial(2*(n-1))/factorial(n)^2
    [a(n) for n in (2..26)]  # Peter Luschny, Nov 24 2013

Formula

a(n) = ((n-2)/n)*binomial(2*n-2, n-1) = (n-2)*A000108(n-1). - Vladeta Jovovic, Aug 03 2002
a(n) = 2*binomial(2n-3, n-3) = 2*A002054(n-2). - Ralf Stephan, Jan 15 2004
a(n) = A000984(n-1) - 2*A000108(n-1). - Geoffrey Critzer, Jan 11 2014
a(n) ~ 4^(n-1)/sqrt(Pi*n). - Ilya Gutkovskiy, Sep 13 2016
D-finite with recurrence n*a(n) +(-7*n+8)*a(n-1) +6*(2*n-5)*a(n-2)=0. - R. J. Mathar, Apr 27 2020
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=3} 1/a(n) = 5/6 - Pi/(9*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 26*sqrt(5)*log(phi)/25 - 7/10, where phi is the golden ratio (A001622). (End)

Extensions

More terms from Zerinvary Lajos, Oct 02 2007

A116385 Expansion of e.g.f. Bessel_I(2,2x) + 2*Bessel_I(3,2x) + Bessel_I(4,2x).

Original entry on oeis.org

0, 0, 1, 2, 5, 10, 21, 42, 84, 168, 330, 660, 1287, 2574, 5005, 10010, 19448, 38896, 75582, 151164, 293930, 587860, 1144066, 2288132, 4457400, 8914800, 17383860, 34767720, 67863915, 135727830, 265182525, 530365050, 1037158320, 2074316640
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Third column of the Riordan array A116382.
Apart from its root term -1: central terms of the triangle in A051631: a(n) = A051631(n+1, [(n+1)/2]). - Reinhard Zumkeller, Nov 13 2011

Crossrefs

Cf. A001405.

Programs

  • Haskell
    a116385 n = a051631 (n+1) $ (n+1) `div` 2
    -- Reinhard Zumkeller, Nov 13 2011
    
  • Mathematica
    With[{nn=40},CoefficientList[Series[BesselI[2,2x]+2BesselI[3,2x]+ BesselI[ 4,2x],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Sep 14 2011 *)
  • PARI
    a(n)= binomial(n+3, (n+3)\2) - 3*binomial(n+1, (n+1)\2) \\ Bill McEachen, Dec 12 2022

Formula

E.g.f.: (d/dx)(Bessel_I(3,2x),x) + 2*Bessel_I(3,2x).
a(n) = C(n+1,floor((n-2)/2))*(1+(-1)^n)/2 + C(n,floor((n-3)/2))*(1-(-1)^n).
Conjecture: (n+4)*a(n) -2*a(n-1) +(-7*n-8)*a(n-2) +6*a(n-3) +12*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 13 2014
a(n) = A001405(n+3) - 3*A001405(n+1) (from Eremin link). - Bill McEachen, Dec 12 2022
G.f.: (-1 - x + x^2 + B(x) - 3*x^2*B(x))/x^3, where B(x) is the g.f. of A001405. - Gennady Eremin, Oct 09 2023

A276666 a(n) = (n-1)*Catalan(n).

Original entry on oeis.org

-1, 0, 2, 10, 42, 168, 660, 2574, 10010, 38896, 151164, 587860, 2288132, 8914800, 34767720, 135727830, 530365050, 2074316640, 8119857900, 31810737420, 124718287980, 489325340400, 1921133836440, 7547311500300, 29667795388452, 116686713634848, 459183826803800
Offset: 0

Views

Author

Peter Luschny, Sep 12 2016

Keywords

Crossrefs

A024483 is a variant of this sequence.

Programs

  • GAP
    Concatenation([-1], List([1..30], n-> 2*Binomial(2*n-1, n+1))); # G. C. Greubel, Aug 29 2019
  • Magma
    [(n-1)*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Sep 13 2016
    
  • Maple
    f := (1-3*x)/(x*sqrt(1-4*x))-1/x:
    series(f,x,29): seq(coeff(%,x,n), n=0..26);
    A276666 := n -> (n^2-1)*(2*n)!/(n+1)!^2:
    seq(A276666(n), n=0..26);
  • Mathematica
    Table[(n - 1) CatalanNumber[n], {n, 0, 30}] (* Vincenzo Librandi, Sep 13 2016 *)
  • PARI
    a(n) = if(n==0,-1, 2*binomial(2*n-1, n+1)); \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    A276666 = lambda n: (n - 1) * catalan_number(n)
    [A276666(n) for n in range(27)]
    

Formula

a(n) = [x^n] (1-3*x)/(x*sqrt(1-4*x))-1/x.
a(n) = 4^n*(n-1)*hypergeom([3/2, -n], [2], 1).
a(n) = 4^n*(n-1)*JacobiP(n,1,-1/2-n,-1)/(n+1).
a(n) = (2*n)! [x^(2^n)]( BesselI(2,2*x) - (1+1/x)*BesselI(1,2*x) ).
a(n) = binomial(2*n,n) - 2*Catalan(n). (See Geoffrey Critzer's formula in A024483).
a(n) = A056040(2*n) - 2*A057977(2*n).
a(n) = A056040(2*n)*(1-2/(n+1)) = (n^2-1)*(2*n)!/(n+1)!^2.
a(n) = A232500(2*n).
a(n) = a(n-1)*2*(n-1)*(2*n-1)/((n-2)*(n+1)) for n > 2. - Chai Wah Wu, Sep 12 2016
a(n) = A024483(n+1) for n>0. - R. J. Mathar, Sep 13 2016
a(n) = A000984(n+1)-3*A000984(n). - Ezhilarasu Velayutham, Aug 27 2019
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/6 - Pi/(9*sqrt(3)).
Sum_{n>=2} (-1)^n/a(n) = 26*sqrt(5)*log(phi)/25 - 7/10, where phi is the golden ratio (A001622). (End)
Showing 1-3 of 3 results.