A051664 a(n) is the number of nonzero coefficients in the n-th cyclotomic polynomial.
2, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 7, 2, 17, 3, 19, 5, 9, 11, 23, 3, 5, 13, 3, 7, 29, 7, 31, 2, 15, 17, 17, 3, 37, 19, 17, 5, 41, 9, 43, 11, 7, 23, 47, 3, 7, 5, 23, 13, 53, 3, 17, 7, 25, 29, 59, 7, 61, 31, 9, 2, 31, 15, 67, 17, 31, 17, 71, 3, 73, 37, 7, 19, 31, 17, 79, 5, 3
Offset: 1
Keywords
Examples
9th cyclotomic polynomial is x^6+x^3+1 which has 3 terms, so a(9)=3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- L. Carlitz, Number of terms in the cyclotomic polynomial F(pq,x), Amer. Math. Monthly, Vol. 73, No. 9, 1966, pp. 979-981.
- T. Y. Lam and K. H. Leung, On the Cyclotomic Polynomial Phi(pq,x), Amer. Math. Monthly, Vol. 103, No. 7, 1996, pp. 562-564.
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Crossrefs
Programs
-
Maple
A051664 := proc(n) numtheory[cyclotomic](n,x) ; nops([coeffs(%)]) ; end proc: # R. J. Mathar, Sep 15 2012
-
Mathematica
Table[Count[CoefficientList[Cyclotomic[n, x], x], _?(#!=0&)], {n, 0, 100}] Table[Length[Cyclotomic[n, x]], {n, 1, 100}] (* Artur Jasinski, Jan 15 2007 *)
-
PARI
a(n)=sum(k=0,eulerphi(n),if(polcoeff(polcyclo(n),k),1,0))
-
PARI
a(n) = #select(x->x!=0, Vec(polcyclo(n))); \\ Michel Marcus, Mar 05 2017
Extensions
More terms from Labos Elemer, May 03 2002
Comments