cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048099 Number of degree-n even permutations of order exactly 2.

Original entry on oeis.org

0, 0, 0, 3, 15, 45, 105, 315, 1323, 5355, 18315, 63855, 272415, 1264263, 5409495, 22302735, 101343375, 507711375, 2495918223, 11798364735, 58074029055, 309240315615, 1670570920095, 8792390355903, 46886941456575, 264381946998975, 1533013006902975, 8785301059346175, 50439885753378303
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001189, A051695. A column of A057740.

Programs

  • Mathematica
    Table[Sum[Binomial[n , 4 i] (4 i)!/(2^(2 i) (2 i)!), {i, 1, Floor[n/4]}], {n,1,22}] (* Luis Manuel Rivera Martínez, May 16 2018 *)
  • PARI
    a(n) = sum(i=1, n\4, binomial(n,4*i)*(4*i)!/(2^(2*i)*(2*i)!)); \\ Michel Marcus, May 17 2018
    
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(serlaplace(exp(x + x^2/2 + A) + exp(x - x^2/2 + A) - 2*exp(x + A))/2, -n)} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = (A001189(n) + A051684(n))/2.
a(n) = Sum_{i=1..floor(n/4)} binomial(n,4i)(4i)!/(2^(2i)(2i)!). - Luis Manuel Rivera Martínez, May 16 2018
E.g.f.: (exp(x + x^2/2) + exp(x - x^2/2))/2 - exp(x). - Andrew Howroyd, Feb 01 2020

A051685 Auxiliary sequence for calculation of number of even permutations of degree n and order exactly 4.

Original entry on oeis.org

0, 0, 0, -6, -30, 0, 420, 2100, 6804, -20160, -376200, -2102760, -6606600, 53237184, 965306160, 5941244400, 12774059760, -305998041600, -5264368533216, -33983490935520, -16008359119200, 3139364813249280, 52132631033313600, 341037535726730304, -715693892444414400
Offset: 1

Views

Author

Keywords

References

  • V. Jovovic, Some combinatorial characteristics of symmetric and alternating groups (in Russian), Belgrade, 1980, unpublished.

Crossrefs

Formula

a(n) = c(n, 4), where c(n, d)=Sum_{k=1..n} (-1)^(k+1)*(n-1)!/(n-k)! *Sum_{l:lcm{k, l}=d} c(n-k, l), c(0, 1)=1.

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003
Showing 1-2 of 2 results.