A051711 a(0) = 1; for n > 0, a(n) = n!*4^n/2.
1, 2, 16, 192, 3072, 61440, 1474560, 41287680, 1321205760, 47563407360, 1902536294400, 83711596953600, 4018156653772800, 208944145996185600, 11700872175786393600, 702052330547183616000, 44931349155019751424000
Offset: 0
Examples
W(exp(x)) = 1 + (x-1)/2 + (x-1)^2/16 - (x-1)^3/192 - ... .
Links
- G. C. Greubel, Table of n, a(n) for n = 0..365
- J. M. Borwein and R. M. Corless, Emerging tools for experimental mathematics.
- J. M. Borwein and R. M. Corless, Emerging tools for experimental mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 647
Crossrefs
Cf. A001662.
Programs
-
Magma
[1] cat [2^(2*n-1)*Factorial(n): n in [1..30]]; // G. C. Greubel, Mar 06 2018
-
Mathematica
Join[{1},Table[(n! 4^n)/2,{n,20}]] (* Harvey P. Dale, Oct 05 2012 *)
-
PARI
a(n)=if(n<1,!n,4^n/2*n!)
Formula
E.g.f.: (1-2*x)/(1-4*x).
a(n) = 4*n * a(n-1), n > 0.
Extensions
More terms from James Sellers, Dec 07 1999
Edited by Michael Somos, Aug 21 2002
Comments