cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046029 Numbers k such that (k!)^2 + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 9, 10, 11, 13, 24, 65, 76, 127162
Offset: 1

Views

Author

Keywords

Comments

a(14) > 780. - Ralf Stephan, Oct 21 2002
a(14) > 2500. - Gabriel Cunningham (gcasey(AT)mit.edu), Feb 23 2004
a(14) > 10000. - Charles R Greathouse IV, Nov 16 2006
a(14) > 16000. - Robert Price, Aug 13 2011
a(15) > 150000. - Ryan Propper, Jun 25 2025

Examples

			9 is a term because (9!)^2 + 1 is prime.
		

References

  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.

Crossrefs

Programs

  • Magma
    [n: n in [0..90] |IsPrime(Factorial(n)^2+1)]; // Vincenzo Librandi, May 28 2015
  • Mathematica
    Do[ If[ PrimeQ[n!^2 + 1], Print[n]], {n, 500}] (* Robert G. Wilson v, Apr 14 2004 *)
    Select[Range[1000], PrimeQ[(#!^2 + 1)] &] (* Vincenzo Librandi, May 28 2015 *)

Extensions

a(14) from Ryan Propper, Jun 25 2025

A053608 Numbers x = LCM(1,2,...,k) such that x^2 + 1 is prime.

Original entry on oeis.org

1, 2, 6, 420, 360360, 718766754945489455304472257065075294400
Offset: 1

Views

Author

Labos Elemer, Feb 09 2000

Keywords

Comments

The next term has k > 10^4, if it exists. - Amiram Eldar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]], PrimeQ[#^2 + 1] &] (* Amiram Eldar, Aug 23 2024 *)

A053609 Primes of form x^2+1 where x = LCM(1,2,...,k) for some k.

Original entry on oeis.org

2, 5, 37, 176401, 129859329601, 516625648014869290354797521879383114125823989794742396526049715541246671360001
Offset: 1

Views

Author

Labos Elemer, Feb 09 2000

Keywords

Comments

The next term has k > 10^4, if it exists. - Amiram Eldar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]]^2 + 1, PrimeQ] (* Amiram Eldar, Aug 23 2024 *)

Formula

a(n) = A053608(A053608(n)) = A053608(n)^2 + 1. - Amiram Eldar, Aug 23 2024
Showing 1-3 of 3 results.