cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A200906 Numbers n such that cyclotomic polynomial value Phi(5,n!) is prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 21, 44, 64, 244, 268, 2415
Offset: 1

Views

Author

Serge Batalov, Nov 23 2011

Keywords

Comments

2415 corresponds to a probable prime. - Serge Batalov, Nov 24 2011
a(12) > 15000. - Robert Price, Jun 20 2015

Examples

			5 is in the sequence because Phi(5,5!) = ((5!)^5-1)/(5!-1)= 209102521 is prime.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[Cyclotomic[5, n!]], Print[n]], {n, 0, 600}]
  • PARI
    for(n=0,600,x=n!;if(isprime(eval(polcyclo(5))),print(n)))

A051856 Numbers k such that (k!)^2 + k! + 1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 76, 2837, 6001, 7076
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Examples

			6 is in the sequence because (6!)^2+6!+1=519121 is prime.
		

References

  • H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3) (1987)

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n!^2+n!+1], Print[n]], {n, 600}] (* Farideh Firoozbakht, Jul 12 2003 *)

Extensions

Edited by R. J. Mathar, Aug 08 2008
a(8)-a(10) from Serge Batalov, Nov 24 2011

A282706 Smallest prime factor of A020549(n) = (n!)^2 + 1.

Original entry on oeis.org

2, 2, 5, 37, 577, 14401, 13, 101, 17, 131681894401, 13168189440001, 1593350922240001, 101, 38775788043632640001, 29, 1344169, 149, 9049, 37, 710341, 41, 61, 337, 509, 384956219213331276939737002152967117209600000001, 941
Offset: 0

Views

Author

N. J. A. Sloane, Feb 26 2017

Keywords

Comments

By construction, for n >= 2, a(n) == 1 (mod 4) and a(n) > n.
From Robert Israel, Mar 08 2017: (Start)
a(n) = A020549(n) for n in A046029.
a(n) <= 2*n+1 if n is in A104636.
The first member of A104636 for which a(n) < 2*n+1 is 48.
a(a(n)-n-1) = a(n). (End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.

Crossrefs

Programs

  • Magma
    [2] cat [Min(PrimeFactors(Factorial(n)^2 + 1)):n in[1..25]]; // Vincenzo Librandi, Feb 28 2017
  • Maple
    f:= proc(n) local a;
      a:= min(map(proc(t) if t[1]::integer then t[1] fi end proc, ifactors((n!)^2+1,easy)[2]));
    if a = infinity then
       a:= traperror(timelimit(60, min(map(t -> t[1], ifactors((n!)^2+1)[2]))));
    fi;
      a
    end proc:
    map(f, [$0..36]); # Robert Israel, Mar 08 2017
  • Mathematica
    Join[{2}, Array[FactorInteger[(#!)^2 + 1][[1, 1]]&, {25}]] (* Vincenzo Librandi, Feb 28 2017 *)

Extensions

More terms from Vincenzo Librandi, Feb 28 2017

A051739 Primes of the form (n!)^2 + 1.

Original entry on oeis.org

2, 5, 37, 577, 14401, 131681894401, 13168189440001, 1593350922240001, 38775788043632640001, 384956219213331276939737002152967117209600000001
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 06 1999

Keywords

Examples

			37 is a term because it is prime and is (3!)^2 + 1.
		

Crossrefs

Cf. A046029. Primes in A020549.

Programs

Extensions

More terms from James Sellers, Dec 08 1999

A051855 Numbers n such that (n!)^4+1 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 13, 112, 328, 11123
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | IsPrime(Factorial(n)^4+1)]; // Vincenzo Librandi, Aug 15 2013
  • Mathematica
    Select[Range[0, 350], PrimeQ[(#!)^4 + 1]&] (* Vincenzo Librandi, Aug 15 2013 *)
  • PARI
    isok(n) = isprime(n!^4 + 1); \\ Michel Marcus, Aug 15 2013
    

Extensions

a(9) from Robert Price, Jul 24 2014
Prepended a(1)=0, Robert Price, Sep 01 2014

A083340 Numbers n such that A020549(n)=(n!)^2+1 is a semiprime.

Original entry on oeis.org

6, 7, 8, 12, 15, 16, 17, 18, 19, 28, 29, 41, 45, 53, 55, 61, 73
Offset: 1

Views

Author

Hugo Pfoertner, Apr 24 2003

Keywords

Comments

The smaller of the two prime factors is given in A083341. The next candidates for a continuation are 55 and 61. (55!)^2 + 1 is composite with 147 decimal digits and unknown factorization.
(55!)^2 + 1 has been factored using ECM into P52*P96 with P52 = A083341(15). (61!)^2 + 1 is composite with 168 decimal digits. - Hugo Pfoertner, Jul 13 2019
Using CADO-NFS, (61!)^2 + 1 has been factored into P58*P110 with P58 = A282706(61) in 17 days wall clock time using 56 million CPU seconds. a(18) >= 75. - Hugo Pfoertner, Aug 04 2019

Examples

			a(1)=6 because (6!)^2+1=518401=13*39877 is a semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60],PrimeOmega[(#!)^2+1]==2&] (* Harvey P. Dale, Dec 12 2018 *)

Extensions

a(15) from Hugo Pfoertner, Jul 13 2019
a(16), a(17) from Hugo Pfoertner, Aug 04 2019

A359180 Numbers k such that k!^2 / 2 + 1 is prime.

Original entry on oeis.org

2, 3, 6, 18, 19, 82, 1298, 3139, 3687, 4637
Offset: 1

Views

Author

Arsen Vardanyan, Dec 18 2022

Keywords

Examples

			3!^2 / 2 + 1 = 6^2/2 + 1 = 19, a prime number, so 3 is a term.
		

Crossrefs

Programs

  • PARI
    isok(k) = (k>1) && isprime(k!^2 / 2 + 1); \\ Michel Marcus, Jan 15 2023

Extensions

a(7) from Michael S. Branicky, Dec 18 2022
a(8)-a(10) from Michael S. Branicky, Apr 10 2023

A053608 Numbers x = LCM(1,2,...,k) such that x^2 + 1 is prime.

Original entry on oeis.org

1, 2, 6, 420, 360360, 718766754945489455304472257065075294400
Offset: 1

Views

Author

Labos Elemer, Feb 09 2000

Keywords

Comments

The next term has k > 10^4, if it exists. - Amiram Eldar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]], PrimeQ[#^2 + 1] &] (* Amiram Eldar, Aug 23 2024 *)

A053609 Primes of form x^2+1 where x = LCM(1,2,...,k) for some k.

Original entry on oeis.org

2, 5, 37, 176401, 129859329601, 516625648014869290354797521879383114125823989794742396526049715541246671360001
Offset: 1

Views

Author

Labos Elemer, Feb 09 2000

Keywords

Comments

The next term has k > 10^4, if it exists. - Amiram Eldar, Aug 23 2024

Crossrefs

Programs

  • Mathematica
    Select[FoldList[LCM, 1, Select[Range[100], PrimePowerQ]]^2 + 1, PrimeQ] (* Amiram Eldar, Aug 23 2024 *)

Formula

a(n) = A053608(A053608(n)) = A053608(n)^2 + 1. - Amiram Eldar, Aug 23 2024

A064769 Numbers n such that (n!)^2 + prime(n) is prime.

Original entry on oeis.org

1, 2, 3, 5, 9, 17, 65, 222, 1720, 2975, 3494, 10489, 17948
Offset: 1

Views

Author

Jason Earls, Oct 18 2001

Keywords

Comments

Term <= 1720 certified prime with Primo.
Next term, if it exists, is greater than 2700. - Ryan Propper, Nov 05 2005
a(10)-a(13) are probable primes.
a(14) > 20000. - Robert Price, Aug 29 2014

Examples

			(5!)^2 + prime(5) = 120^2 + 11 = 14400 + 11 = 14411 is prime, so 5 is a term.
		

Crossrefs

Cf. A046029, A072599 (n such that (n!)^2 - prime(n) is prime).

Programs

  • PARI
    for(n=1,300, if(isprime((n!)^2+prime(n)),print1(n, ", ")))

Extensions

1720 from Ryan Propper, Nov 05 2005
a(10)-a(13) from Robert Price, Aug 29 2014
Showing 1-10 of 19 results. Next