A084811 Duplicate of A051856.
0, 1, 2, 3, 4, 6, 76
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
3 is in the sequence because 3!+4!-1=29 is prime.
v={}; Do[If[PrimeQ[n!+(n+1)!-1], v=Append[v, n]; Print[v]], {n, 1800}]; v
3 is in the sequence because 3!+4!+1=31 is prime.
v={}; Do[If[PrimeQ[n!+(n+1)!+1], v=Append[v, n]; Print[v]], {n, 1800}]; v Select[Range[0,25000],PrimeQ[#!+(#+1)!+1]&] (* Robert Price, Aug 26 2015 *)
isok(k) = ispseudoprime(k!+(k+1)!+1); \\ Altug Alkan, Mar 22 2018
Select[Range[80],With[{c=#!},AllTrue[c^2+{c+1,1},PrimeQ]]&] (* Harvey P. Dale, Aug 11 2025 *)
isok(n) = isprime((n!)^2-n!+1); \\ Michel Marcus, Aug 26 2013
a := proc (n) if isprime(factorial(n)^2+factorial(n)+1) = true then factorial(n)^2+factorial(n)+1 else end if end proc: seq(a(n), n = 1 .. 76); # Emeric Deutsch, Jul 21 2009
Select[Table[n!^2+n!+1,{n,150}],PrimeQ] (* Harvey P. Dale, Jul 23 2009 *) Select[#^2+#+1&/@(Range[150]!),PrimeQ] (* Harvey P. Dale, Nov 24 2024 *)
Comments