cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084811 Duplicate of A051856.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 76
Offset: 1

Views

Author

Keywords

A087146 Numbers k such that k! + (k+1)! - 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 9, 13, 14, 17, 27, 28, 33, 39, 103, 115, 205, 291, 1431, 1532, 1710, 1937, 3901, 3981, 4682, 6569, 20266, 20662
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 19 2003

Keywords

Comments

291 is in the sequence and also is in the sequence A087147, thus (291!+292!-1,291!+292!+1) is a twin pair of primes. Any additional terms are greater than 1800 with the next prime having more than 5086 digits.
a(27) > 25000. - Robert Price, Jul 12 2015
a(1)-a(26) give certified primes. - Robert Price, Jul 12 2015

Examples

			3 is in the sequence because 3!+4!-1=29 is prime.
		

References

  • H. Dubner, Factorial and primorial primes, J. Rec. Math., 19(No. 3, 1987)

Crossrefs

Cf. A087147, A051856, A125174 (corresponding primes).

Programs

  • Mathematica
    v={}; Do[If[PrimeQ[n!+(n+1)!-1], v=Append[v, n]; Print[v]], {n, 1800}]; v

Extensions

One more term from Ryan Propper, Aug 13 2005
a(21)-a(26) from Robert Price, Jul 12 2015

A087147 Numbers k such that k! + (k+1)! + 1 is prime.

Original entry on oeis.org

0, 3, 7, 9, 67, 291, 1343, 6984, 12861
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 19 2003

Keywords

Comments

291 is in the sequence and also is in the sequence A087146, thus (291!+292!-1,291!+292!+1) is a twin pair of primes. Any additional terms are greater than 1800 with the next prime having more than 5086 digits.
Next term is greater than 4200. - Gabriel Cunningham (gcasey(AT)mit.edu), Sep 09 2003
a(10) > 25000. - Robert Price, Aug 26 2015
k+1 is not prime because (p-1)! + p! + 1 == 0 mod p and (p-1)! + p! + 1 > p where p is prime. - Seiichi Manyama, Mar 22 2018

Examples

			3 is in the sequence because 3!+4!+1=31 is prime.
		

References

  • H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No.3, 1987)

Crossrefs

Primes in A118913. [From Dmitry Kamenetsky, Oct 21 2008]

Programs

  • Mathematica
    v={}; Do[If[PrimeQ[n!+(n+1)!+1], v=Append[v, n]; Print[v]], {n, 1800}]; v
    Select[Range[0,25000],PrimeQ[#!+(#+1)!+1]&] (* Robert Price, Aug 26 2015 *)
  • PARI
    isok(k) = ispseudoprime(k!+(k+1)!+1); \\ Altug Alkan, Mar 22 2018

Extensions

a(8)-a(9) from Robert Price, Aug 26 2015

A142959 Numbers k such that both (k!)^2 + k! + 1 and (k!)^2 + 1 are prime.

Original entry on oeis.org

1, 2, 3, 4, 76
Offset: 1

Views

Author

Lekraj Beedassy, Jul 13 2008

Keywords

Comments

For the numbers of digits of the associated primes, see A142960.
a(6) > 150000, because A46029(15) > 150000 and A46029(14) = 127162 is not a term here since (127162!)^2 + 127162! + 1 is divisible by 2049703. - Giovanni Resta, Aug 12 2025

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 76, pp 26, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    Select[Range[80],With[{c=#!},AllTrue[c^2+{c+1,1},PrimeQ]]&] (* Harvey P. Dale, Aug 11 2025 *)

Formula

A046029 INTERSECT A051856. - R. J. Mathar, Aug 08 2008

A051857 Numbers n such that (n!)^2-n!+1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 38, 2319, 2996, 3321, 3892
Offset: 1

Views

Author

Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999

Keywords

Comments

a(1)-a(9) are verified primes using BLS option in pfgw. - Robert Price, Aug 24 2014
a(10) > 15000. - Robert Price, Aug 24 2014

Crossrefs

Programs

  • PARI
    isok(n) = isprime((n!)^2-n!+1); \\ Michel Marcus, Aug 26 2013

Extensions

a(7)-a(9) from Robert Price, Aug 24 2014

A162455 Primes of the form (n!)^2 + (n!) + 1.

Original entry on oeis.org

3, 7, 43, 601, 519121
Offset: 1

Views

Author

Daniel Tisdale, Jul 03 2009

Keywords

Comments

a(6) is associated with 76!=A000142(76)=A051856(7)! and has 223 decimal digits. - R. J. Mathar, Emeric Deutsch and Harvey P. Dale, Jul 14 2009
a(6) =
355509027001074785420251313577077264819432566692554164797700525028005\
008417722668844213916658906516439209129303887999464691915088148300993\
913093163021697465163231343499013584682565554967153792311772997222400\
0000000000000001. - N. J. A. Sloane, Jul 11 2010

Programs

  • Maple
    a := proc (n) if isprime(factorial(n)^2+factorial(n)+1) = true then factorial(n)^2+factorial(n)+1 else end if end proc: seq(a(n), n = 1 .. 76); # Emeric Deutsch, Jul 21 2009
  • Mathematica
    Select[Table[n!^2+n!+1,{n,150}],PrimeQ] (* Harvey P. Dale, Jul 23 2009 *)
    Select[#^2+#+1&/@(Range[150]!),PrimeQ] (* Harvey P. Dale, Nov 24 2024 *)

Formula

a(n) = A002061(A000142(A051856(n+1))+1). - R. J. Mathar, Jul 14 2009
Showing 1-6 of 6 results.