cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Arsen Vardanyan

Arsen Vardanyan's wiki page.

Arsen Vardanyan has authored 12 sequences. Here are the ten most recent ones:

A387039 Numbers k such that (p_k#)*(p_(k-1)#)+1, or A228593(k)+1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 11, 12, 35, 617
Offset: 1

Author

Arsen Vardanyan, Aug 14 2025

Keywords

Examples

			4 is a term since (p_4#)(p_3#) + 1 = (7*5*3*2)(5*3*2) + 1 = 210*30 + 1 = 6301 is prime.
		

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n<1, 1, p(n-1)*ithprime(n)) end:
    q:= k-> isprime(p(k)*p(k-1)+1):
    select(q, [$1..50])[];  # Alois P. Heinz, Aug 14 2025
  • Mathematica
    Position[Times @@@ Partition[FoldList[Times, 1, Prime@ Range[400]], 2, 1] + 1, ?PrimeQ][[All, 1]] (* _Michael De Vlieger, Aug 23 2025 *)
  • PARI
    isok(k) = isprime(vecprod(primes(k))*vecprod(primes(k-1))+1);

Extensions

a(10) from Michael S. Branicky, Aug 14 2025

A377248 Numbers k such that 8191 * 2^k + 1 is prime.

Original entry on oeis.org

12, 20, 412, 712, 2092, 4704, 10176, 33396, 41124, 105604, 139780, 142924
Offset: 1

Author

Arsen Vardanyan, Oct 21 2024

Keywords

Comments

8191 is the 5th Mersenne prime: 8191 = 2^13 - 1 (a term of A000668).

Examples

			12 is a term, because 8191 * 2^12 + 1 = 8191 * 4096 + 1 = 33550337 is prime. (also a term of A061644).
		

Crossrefs

Programs

  • PARI
    is(k) = isprime(8191 * 2^k + 1);

Extensions

a(8)-a(9) from Hugo Pfoertner, Oct 21 2024
a(10)-a(12) from Michael S. Branicky, Nov 05 2024

A375777 Numbers k such that k - rad(k) - 1 is prime, where rad(k) is A007947(k).

Original entry on oeis.org

8, 9, 12, 16, 18, 24, 25, 27, 28, 32, 36, 40, 45, 48, 49, 54, 56, 60, 63, 64, 75, 76, 84, 90, 96, 98, 100, 108, 112, 120, 121, 124, 126, 136, 144, 148, 152, 153, 160, 171, 175, 180, 184, 189, 196, 198, 204, 207, 208, 220, 228, 232, 243, 250, 261, 264, 270, 276
Offset: 1

Author

Arsen Vardanyan, Aug 27 2024

Keywords

Examples

			12 is a term, because 12 - rad(12) - 1 = 12 - (2 * 3) - 1 = 12 - 6 - 1 = 5 is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], PrimeQ[# - Times @@ FactorInteger[#][[;; , 1]] - 1] &] (* Amiram Eldar, Aug 27 2024 *)
  • PARI
    isok(k) = isprime(k - (vecprod(factor(k)[, 1])) - 1);

A375310 Numbers k such that k!^2 + (k-1)!^2 - 1 is prime.

Original entry on oeis.org

14, 32, 58, 182, 240, 474, 824, 3018, 5977, 9088
Offset: 1

Author

Arsen Vardanyan, Aug 11 2024

Keywords

Comments

Contains no primes. - Robert Israel, Aug 12 2024
Moreover: If k is any prime, then k must divide the given formula and if k is not a prime the least factor that divides the formula is bigger than k and smaller than the square root of the result of the formula (if it exist, if not: k is a term). - Karl-Heinz Hofmann, Aug 20 2024
a(11) > 15000. - Karl-Heinz Hofmann, Sep 08 2024

Examples

			14 is a term, because 14!^2 + 13!^2 - 1 = 7600054456551997440000 + 38775788043632640000 - 1 = 7638830244595630079999 is a prime number.
		

Crossrefs

Programs

  • Maple
    select(k -> isprime((k^2+1)*((k-1)!)^2-1), [$1..1000]); # Robert Israel, Aug 12 2024
  • PARI
    is(k) = isprime(k!^2 + (k-1)!^2 - 1);
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A375310_gen(): # generator of terms
        f = 1
        for k in count(1):
            if isprime((k**2+1)*f-1):
                yield k
            f *= k**2
    A375310_list = list(islice(A375310_gen(),6)) # Chai Wah Wu, Oct 02 2024

Extensions

a(8) from Hugo Pfoertner, Aug 13 2024
a(9) from Michael S. Branicky, Aug 14 2024
a(10) from Karl-Heinz Hofmann, Sep 08 2024

A374593 Numbers k such that k - rad(k) + 1 is prime, where rad(k) is the radical A007947(k).

Original entry on oeis.org

4, 8, 9, 12, 18, 20, 24, 32, 36, 40, 44, 45, 48, 49, 50, 56, 60, 63, 72, 75, 80, 81, 84, 88, 90, 92, 99, 104, 108, 116, 117, 128, 132, 136, 140, 144, 147, 153, 156, 160, 162, 164, 168, 169, 180, 184, 200, 204, 207, 212, 216, 224, 225, 234, 240, 243, 245, 250
Offset: 1

Author

Arsen Vardanyan, Aug 23 2024

Keywords

Comments

Includes 4*p for p in A005384, 8*p for p in A007693, and 16*p for p in A228857. - Robert Israel, Jun 27 2025

Examples

			12 is a term, because 12 - rad(12) + 1 = 12 - (2*3) + 1 = 12 - 6 + 1 = 7 is prime.
		

Programs

  • Maple
    rad:= n -> convert(numtheory:-factorset(n),`*`):
    select(k -> isprime(k - rad(k)+1), [$1..1000]); # Robert Israel, Jun 27 2025
  • Mathematica
    rad[n_] := Times @@ (First@# & /@ FactorInteger@ n);Select[Range[250],PrimeQ[#-rad[#]+1]&] (* James C. McMahon, Sep 27 2024 *)
  • PARI
    isok(k) = isprime(k - (factorback(factor(k)[, 1])) + 1);

A374901 Numbers k such that k!^2 + ((k - 1)!^2) + 1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 10, 11, 118, 271, 288, 441, 457, 2931, 5527, 6984, 9998, 10395, 13703
Offset: 1

Author

Arsen Vardanyan, Jul 31 2024

Keywords

Comments

a(18) > 15000 - Karl-Heinz Hofmann, Aug 23 2024

Examples

			4 is a term, because 4!^2 + 3!^2 + 1 = 576 + 36 + 1 = 613 is a prime number.
		

Programs

  • PARI
    is(k) = isprime((k!^2)+((k-1)!)^2+1);
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A374901_gen(): # generator of terms
        f = 1
        for k in count(1):
            if isprime((k**2+1)*f+1):
                yield k
            f *= k**2
    A374901_list = list(islice(A374901_gen(),10)) # Chai Wah Wu, Oct 02 2024

Extensions

a(12)-a(14) from Michael S. Branicky, Aug 01 2024
a(15)-a(17) from Karl-Heinz Hofmann, Aug 23 2024

A359695 Numbers k such that 29^k - 2 is prime.

Original entry on oeis.org

2, 4, 8, 14, 42, 420, 1344
Offset: 1

Author

Arsen Vardanyan, Mar 07 2023

Keywords

Comments

a(8) > 10^4, if it exists. - Amiram Eldar, Mar 10 2023
All terms in this sequence are even. - Yifan Xie, Mar 12 2023
a(8) > 5*10^4, if it exists. - Michael S. Branicky, Sep 14 2024

Examples

			4 is a term because 29^4 - 2 = 707279 is a prime number.
		

Crossrefs

Cf. A087886 (29^k + 2 is prime).
Cf. A128460, A128459, A128457, A109076, A090669, A105772, A109080, (and similar others).

Programs

  • Mathematica
    Select[Range[1400], PrimeQ[29^# - 2] &] (* Amiram Eldar, Mar 10 2023 *)
  • PARI
    is(k) = isprime(29^k - 2);

A359180 Numbers k such that k!^2 / 2 + 1 is prime.

Original entry on oeis.org

2, 3, 6, 18, 19, 82, 1298, 3139, 3687, 4637
Offset: 1

Author

Arsen Vardanyan, Dec 18 2022

Keywords

Examples

			3!^2 / 2 + 1 = 6^2/2 + 1 = 19, a prime number, so 3 is a term.
		

Crossrefs

Programs

  • PARI
    isok(k) = (k>1) && isprime(k!^2 / 2 + 1); \\ Michel Marcus, Jan 15 2023

Extensions

a(7) from Michael S. Branicky, Dec 18 2022
a(8)-a(10) from Michael S. Branicky, Apr 10 2023

A359213 Numbers k such that rad(k) - 1 is prime.

Original entry on oeis.org

3, 6, 9, 12, 14, 18, 24, 27, 28, 30, 36, 38, 42, 48, 54, 56, 60, 62, 72, 74, 76, 81, 84, 90, 96, 98, 102, 108, 110, 112, 114, 120, 124, 126, 138, 144, 148, 150, 152, 158, 162, 168, 174, 180, 182, 192, 194, 196, 204, 216, 220, 224, 228, 230, 240, 243, 248, 252
Offset: 1

Author

Arsen Vardanyan, Dec 21 2022

Keywords

Examples

			rad(60) - 1 = 2*3*5 - 1 = 29, so 60 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[250], PrimeQ[Times @@ FactorInteger[#][[;; , 1]] - 1] &] (* Amiram Eldar, Dec 21 2022 *)
  • PARI
    isok(k) = isprime(factorback(factor(k)[, 1]) - 1); \\ Michel Marcus, Dec 22 2022

A358805 Numbers k such that k! + (k!/2) + 1 is prime.

Original entry on oeis.org

4, 5, 7, 11, 12, 14, 18, 28, 30, 62, 135, 153, 275, 584, 630, 1424, 1493, 4419, 8492, 10950
Offset: 1

Author

Arsen Vardanyan, Dec 01 2022

Keywords

Comments

Numbers k such that A070960(k)+1 is prime.
No more terms < 10000. - Vaclav Kotesovec, Dec 12 2022

Crossrefs

Programs

  • PARI
    is(k) = isprime(k!+(k!/2)+1);

Extensions

a(18)-a(19) from Vaclav Kotesovec, Dec 09 2022
a(20) from Michael S. Branicky, Aug 02 2024