cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358878 Numbers k such that k! + (k!/2) - 1 is prime.

Original entry on oeis.org

2, 5, 7, 15, 20, 47, 84, 138, 169, 257, 263, 431, 559, 2939, 4403, 4870, 5273
Offset: 1

Views

Author

Arsen Vardanyan, Dec 04 2022

Keywords

Comments

Numbers k such that A070960(k) - 1 is prime.
No more terms < 10000. - Vaclav Kotesovec, Dec 12 2022

Crossrefs

Programs

  • PARI
    is(k) = isprime(k!+(k!/2)-1);

Extensions

a(14)-a(17) from Vaclav Kotesovec, Dec 07 2022

A359180 Numbers k such that k!^2 / 2 + 1 is prime.

Original entry on oeis.org

2, 3, 6, 18, 19, 82, 1298, 3139, 3687, 4637
Offset: 1

Views

Author

Arsen Vardanyan, Dec 18 2022

Keywords

Examples

			3!^2 / 2 + 1 = 6^2/2 + 1 = 19, a prime number, so 3 is a term.
		

Crossrefs

Programs

  • PARI
    isok(k) = (k>1) && isprime(k!^2 / 2 + 1); \\ Michel Marcus, Jan 15 2023

Extensions

a(7) from Michael S. Branicky, Dec 18 2022
a(8)-a(10) from Michael S. Branicky, Apr 10 2023

A374901 Numbers k such that k!^2 + ((k - 1)!^2) + 1 is prime.

Original entry on oeis.org

1, 3, 4, 6, 10, 11, 118, 271, 288, 441, 457, 2931, 5527, 6984, 9998, 10395, 13703
Offset: 1

Views

Author

Arsen Vardanyan, Jul 31 2024

Keywords

Comments

a(18) > 15000 - Karl-Heinz Hofmann, Aug 23 2024

Examples

			4 is a term, because 4!^2 + 3!^2 + 1 = 576 + 36 + 1 = 613 is a prime number.
		

Crossrefs

Programs

  • PARI
    is(k) = isprime((k!^2)+((k-1)!)^2+1);
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A374901_gen(): # generator of terms
        f = 1
        for k in count(1):
            if isprime((k**2+1)*f+1):
                yield k
            f *= k**2
    A374901_list = list(islice(A374901_gen(),10)) # Chai Wah Wu, Oct 02 2024

Extensions

a(12)-a(14) from Michael S. Branicky, Aug 01 2024
a(15)-a(17) from Karl-Heinz Hofmann, Aug 23 2024

A375310 Numbers k such that k!^2 + (k-1)!^2 - 1 is prime.

Original entry on oeis.org

14, 32, 58, 182, 240, 474, 824, 3018, 5977, 9088
Offset: 1

Views

Author

Arsen Vardanyan, Aug 11 2024

Keywords

Comments

Contains no primes. - Robert Israel, Aug 12 2024
Moreover: If k is any prime, then k must divide the given formula and if k is not a prime the least factor that divides the formula is bigger than k and smaller than the square root of the result of the formula (if it exist, if not: k is a term). - Karl-Heinz Hofmann, Aug 20 2024
a(11) > 15000. - Karl-Heinz Hofmann, Sep 08 2024

Examples

			14 is a term, because 14!^2 + 13!^2 - 1 = 7600054456551997440000 + 38775788043632640000 - 1 = 7638830244595630079999 is a prime number.
		

Crossrefs

Programs

  • Maple
    select(k -> isprime((k^2+1)*((k-1)!)^2-1), [$1..1000]); # Robert Israel, Aug 12 2024
  • PARI
    is(k) = isprime(k!^2 + (k-1)!^2 - 1);
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A375310_gen(): # generator of terms
        f = 1
        for k in count(1):
            if isprime((k**2+1)*f-1):
                yield k
            f *= k**2
    A375310_list = list(islice(A375310_gen(),6)) # Chai Wah Wu, Oct 02 2024

Extensions

a(8) from Hugo Pfoertner, Aug 13 2024
a(9) from Michael S. Branicky, Aug 14 2024
a(10) from Karl-Heinz Hofmann, Sep 08 2024
Showing 1-4 of 4 results.