A358805
Numbers k such that k! + (k!/2) + 1 is prime.
Original entry on oeis.org
4, 5, 7, 11, 12, 14, 18, 28, 30, 62, 135, 153, 275, 584, 630, 1424, 1493, 4419, 8492, 10950
Offset: 1
A359180
Numbers k such that k!^2 / 2 + 1 is prime.
Original entry on oeis.org
2, 3, 6, 18, 19, 82, 1298, 3139, 3687, 4637
Offset: 1
3!^2 / 2 + 1 = 6^2/2 + 1 = 19, a prime number, so 3 is a term.
A374901
Numbers k such that k!^2 + ((k - 1)!^2) + 1 is prime.
Original entry on oeis.org
1, 3, 4, 6, 10, 11, 118, 271, 288, 441, 457, 2931, 5527, 6984, 9998, 10395, 13703
Offset: 1
4 is a term, because 4!^2 + 3!^2 + 1 = 576 + 36 + 1 = 613 is a prime number.
-
is(k) = isprime((k!^2)+((k-1)!)^2+1);
-
from itertools import count, islice
from sympy import isprime
def A374901_gen(): # generator of terms
f = 1
for k in count(1):
if isprime((k**2+1)*f+1):
yield k
f *= k**2
A374901_list = list(islice(A374901_gen(),10)) # Chai Wah Wu, Oct 02 2024
A375310
Numbers k such that k!^2 + (k-1)!^2 - 1 is prime.
Original entry on oeis.org
14, 32, 58, 182, 240, 474, 824, 3018, 5977, 9088
Offset: 1
14 is a term, because 14!^2 + 13!^2 - 1 = 7600054456551997440000 + 38775788043632640000 - 1 = 7638830244595630079999 is a prime number.
-
select(k -> isprime((k^2+1)*((k-1)!)^2-1), [$1..1000]); # Robert Israel, Aug 12 2024
-
is(k) = isprime(k!^2 + (k-1)!^2 - 1);
-
from itertools import count, islice
from sympy import isprime
def A375310_gen(): # generator of terms
f = 1
for k in count(1):
if isprime((k**2+1)*f-1):
yield k
f *= k**2
A375310_list = list(islice(A375310_gen(),6)) # Chai Wah Wu, Oct 02 2024
Showing 1-4 of 4 results.
Comments