cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051740 Partial sums of A007584.

Original entry on oeis.org

1, 11, 45, 125, 280, 546, 966, 1590, 2475, 3685, 5291, 7371, 10010, 13300, 17340, 22236, 28101, 35055, 43225, 52745, 63756, 76406, 90850, 107250, 125775, 146601, 169911, 195895, 224750, 256680, 291896, 330616, 373065, 419475, 470085, 525141
Offset: 0

Views

Author

Barry E. Williams, Dec 07 1999

Keywords

Comments

Convolution of A000027 with A001106 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R.Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

  • GAP
    List([0..40], n-> (7*n+4)*Binomial(n+3,3)/4); # G. C. Greubel, Aug 29 2019
  • Magma
    /* A000027 convolved with A001106 (excluding 0): */ A001106:=func; [&+[(n-i+1)*A001106(i): i in [1..n]]: n in [1..36]]; // Bruno Berselli, Dec 07 2012
    
  • Maple
    seq((7*n+4)*binomial(n+3,3)/4, n=0..40); # G. C. Greubel, Aug 29 2019
  • Mathematica
    Table[(7*n+4)*Binomial[n+3,3]/4, {n,0,40}] (* G. C. Greubel, Aug 29 2019 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,11,45,125,280},40] (* Harvey P. Dale, May 18 2023 *)
  • PARI
    vector(40, n, (7*n-3)*binomial(n+2,3)/4) \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    [(7*n+4)*binomial(n+3,3)/4 for n in (0..40)] # G. C. Greubel, Aug 29 2019
    

Formula

a(n) = binomial(n+3, 3)*(7*n+4)/4.
a(n) = (7*n+4)*binomial(n+3, 3)/4.
G.f.: (1+6*x)/(1-x)^5.
a(n) = A080852(7,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (4! + 240*x + 288*x^2 + 88*x^3 + 7*x^4)*exp(x)/4!. - G. C. Greubel, Aug 29 2019