A051740 Partial sums of A007584.
1, 11, 45, 125, 280, 546, 966, 1590, 2475, 3685, 5291, 7371, 10010, 13300, 17340, 22236, 28101, 35055, 43225, 52745, 63756, 76406, 90850, 107250, 125775, 146601, 169911, 195895, 224750, 256680, 291896, 330616, 373065, 419475, 470085, 525141
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R.Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
GAP
List([0..40], n-> (7*n+4)*Binomial(n+3,3)/4); # G. C. Greubel, Aug 29 2019
-
Magma
/* A000027 convolved with A001106 (excluding 0): */ A001106:=func
; [&+[(n-i+1)*A001106(i): i in [1..n]]: n in [1..36]]; // Bruno Berselli, Dec 07 2012 -
Maple
seq((7*n+4)*binomial(n+3,3)/4, n=0..40); # G. C. Greubel, Aug 29 2019
-
Mathematica
Table[(7*n+4)*Binomial[n+3,3]/4, {n,0,40}] (* G. C. Greubel, Aug 29 2019 *) LinearRecurrence[{5,-10,10,-5,1},{1,11,45,125,280},40] (* Harvey P. Dale, May 18 2023 *)
-
PARI
vector(40, n, (7*n-3)*binomial(n+2,3)/4) \\ G. C. Greubel, Aug 29 2019
-
Sage
[(7*n+4)*binomial(n+3,3)/4 for n in (0..40)] # G. C. Greubel, Aug 29 2019
Formula
a(n) = binomial(n+3, 3)*(7*n+4)/4.
a(n) = (7*n+4)*binomial(n+3, 3)/4.
G.f.: (1+6*x)/(1-x)^5.
a(n) = A080852(7,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (4! + 240*x + 288*x^2 + 88*x^3 + 7*x^4)*exp(x)/4!. - G. C. Greubel, Aug 29 2019
Comments