cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051744 a(n) = n*(n+1)*(n^2+5*n+18)/24.

Original entry on oeis.org

2, 8, 21, 45, 85, 147, 238, 366, 540, 770, 1067, 1443, 1911, 2485, 3180, 4012, 4998, 6156, 7505, 9065, 10857, 12903, 15226, 17850, 20800, 24102, 27783, 31871, 36395, 41385, 46872, 52888, 59466, 66640, 74445, 82917, 92093, 102011, 112710, 124230, 136612
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

Keywords

Comments

a(n) is the number of binary words with length <= n+1 which contain at least one 0 and one 1 and have at most one ascent. - Amelia Gibbs, May 21 2024

Programs

Formula

a(n) = binomial(n+3, n-1) + binomial(n+1, n-1).
G.f.: x*(2-2*x+x^2)/(1-x)^5. - Colin Barker, Mar 19 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Vincenzo Librandi, Apr 27 2012
a(n) = sum_{k=1..n} sum{j=1..k} sum{i=1..j} (i + binomial(j,k)). - Wesley Ivan Hurt, Nov 01 2014
E.g.f.: (1/24)*x*(x^3+12*x^2+48*x+48)*exp(x). - Robert Israel, Nov 02 2014
a(n) = Sum_{i=1..n+1} Sum_{j=1...i-1} A077028(i,j). - Amelia Gibbs, May 21 2024