cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051747 a(n) = n*(n+1)*(n+2)*(n^2+7*n+32)/120.

Original entry on oeis.org

2, 10, 31, 76, 161, 308, 546, 912, 1452, 2222, 3289, 4732, 6643, 9128, 12308, 16320, 21318, 27474, 34979, 44044, 54901, 67804, 83030, 100880, 121680, 145782, 173565, 205436, 241831, 283216, 330088, 382976, 442442, 509082, 583527, 666444, 758537
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 07 1999

Keywords

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n+2)*(n^2+7*n+32)/120: n in [1..40]]; // Vincenzo Librandi, Jun 15 2011
    
  • Mathematica
    Table[(1/120)*n*(n + 1)*(n + 2)*(n^2 + 7*n + 32), {n, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{2,10,31,76,161,308},60] (* Harvey P. Dale, Oct 03 2012 *)
  • PARI
    conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w; t(n)=n*(n+1)/2; u=vector(10,i,t(i)); v=vector(10,i,t(i)+1); conv(u,v)
    
  • PARI
    Vec(x*(x^2-2*x+2)/(x-1)^6 + O(x^100)) \\ Colin Barker, Mar 18 2015

Formula

a(n) = binomial(n+4, n-1)+binomial(n+2, n-1).
Convolution of triangular numbers with triangular numbers + 1, i.e. [1, 3, 6, 10, 15, 21, ...] with [2, 4, 7, 11, 16, 22, ...].
a(1)=2, a(2)=10, a(3)=31, a(4)=76, a(5)=161, a(6)=308, a(n)=6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Oct 03 2012
G.f.: x*(x^2-2*x+2) / (x-1)^6. - Colin Barker, Mar 18 2015