A051755 Consider problem of placing N queens on an n X n board so that each queen attacks precisely 2 others. Sequence gives maximal number of queens.
3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130
Offset: 2
References
- Peter Hayes, A Problem of Chess Queens, Journal of Recreational Mathematics, 24(4), 1992, 264-271.
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Maple
A051755:=n->`if`(n=2, 3, 2*n-2); seq(A051755(n), n=2..50); # Wesley Ivan Hurt, Feb 09 2014
-
Mathematica
CoefficientList[Series[(z^2 - 2*z + 3)/(z - 1)^2, {z, 0, 100}], z] (* and *) Join[{3}, Table[2*n, {n, 2, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *) LinearRecurrence[{2,-1},{3,4,6},70] (* Harvey P. Dale, Aug 29 2017 *)
-
PARI
Vec(x^2*(x^2-2*x+3)/(x-1)^2 + O(x^100)) \\ Colin Barker, Nov 08 2014
Formula
a(2) = 3, a(n) = 2n-2 for n >= 3.
a(n) = 2*a(n-1)-a(n-2) for n>4. - Colin Barker, Nov 08 2014
G.f.: x^2*(x^2-2*x+3) / (x-1)^2. - Colin Barker, Nov 08 2014
Extensions
More terms from Jud McCranie, Aug 11 2001
Comments