A051841 Number of binary Lyndon words with an even number of 1's.
1, 0, 1, 1, 3, 4, 9, 14, 28, 48, 93, 165, 315, 576, 1091, 2032, 3855, 7252, 13797, 26163, 49929, 95232, 182361, 349350, 671088, 1290240, 2485504, 4792905, 9256395, 17894588, 34636833, 67106816, 130150493, 252641280, 490853403, 954429840, 1857283155, 3616800768, 7048151355, 13743869130, 26817356775
Offset: 1
Examples
a(5) = 3 = |{ 00011, 00101, 01111 }|.
References
- May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
Links
Programs
-
Haskell
a051841 n = (sum $ zipWith (\u v -> gcd 2 u * a008683 u * 2 ^ v) ds $ reverse ds) `div` (2 * n) where ds = a027750_row n -- Reinhard Zumkeller, Mar 17 2013
-
Mathematica
a[n_] := Sum[GCD[d, 2]*MoebiusMu[d]*2^(n/d), {d, Divisors[n]}]/(2n); Table[a[n], {n, 1, 32}] (* Jean-François Alcover, May 14 2012, from formula *)
-
PARI
L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) ); a(n) = sum(k=0, n, if( (n+k)%2==0, L(n, k), 0 ) ) / n; vector(33,n,a(n)) /* Joerg Arndt, Jun 28 2012 */
Formula
a(n) = 1/(2*n)*Sum_{d|n} gcd(d,2)*mu(d)*2^(n/d).
a(n) ~ 2^(n-1) / n. - Vaclav Kotesovec, May 31 2019
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = 1/(2*n)*Sum_{k=1..n} gcd(gcd(n,k),2)*mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} gcd(n/gcd(n,k),2)*mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
Comments