cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051841 Number of binary Lyndon words with an even number of 1's.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 9, 14, 28, 48, 93, 165, 315, 576, 1091, 2032, 3855, 7252, 13797, 26163, 49929, 95232, 182361, 349350, 671088, 1290240, 2485504, 4792905, 9256395, 17894588, 34636833, 67106816, 130150493, 252641280, 490853403, 954429840, 1857283155, 3616800768, 7048151355, 13743869130, 26817356775
Offset: 1

Views

Author

Frank Ruskey, Dec 13 1999

Keywords

Comments

Also number of trace 0 irreducible polynomials over GF(2).
Also number of trace 0 Lyndon words over GF(2).

Examples

			a(5) = 3 = |{ 00011, 00101, 01111 }|.
		

References

  • May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019

Crossrefs

Same as A001037 - A000048. Same as A042980 + A042979.
Cf. A000010.

Programs

  • Haskell
    a051841 n = (sum $ zipWith (\u v -> gcd 2 u * a008683 u * 2 ^ v)
                 ds $ reverse ds) `div` (2 * n) where ds = a027750_row n
    -- Reinhard Zumkeller, Mar 17 2013
  • Mathematica
    a[n_] := Sum[GCD[d, 2]*MoebiusMu[d]*2^(n/d), {d, Divisors[n]}]/(2n);
    Table[a[n], {n, 1, 32}]
    (* Jean-François Alcover, May 14 2012, from formula *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%2==0, L(n, k), 0 ) ) / n;
    vector(33,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */
    

Formula

a(n) = 1/(2*n)*Sum_{d|n} gcd(d,2)*mu(d)*2^(n/d).
a(n) ~ 2^(n-1) / n. - Vaclav Kotesovec, May 31 2019
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = 1/(2*n)*Sum_{k=1..n} gcd(gcd(n,k),2)*mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} gcd(n/gcd(n,k),2)*mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)