A123915
Number of binary words whose (unique) decreasing Lyndon decomposition is into Lyndon words each with an even number of 1's; EULER transform of A051841.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 11, 21, 39, 75, 143, 275, 528, 1020, 1971, 3821, 7414, 14419, 28072, 54739, 106847, 208815, 408470, 799806, 1567333, 3073916, 6032971, 11848693, 23285202, 45787650, 90085410, 177331748, 349243800, 688129474, 1356433342, 2674877358, 5276869233
Offset: 0
The binary words 00000, 01100, 00110, 01111, 00011, 00101 of length 5 decompose as 0*0*0*0*0, 011*0*0, 0011*0, 01111, 00011, 00101 and each subword has an even number of 1's, therefore a(5)=6.
-
with(numtheory):
b:= proc(n) option remember; add(igcd(d, 2)*
2^(n/d)*mobius(d), d=divisors(n))/(2*n)
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 28 2017
-
b[n_] := b[n] = Sum[GCD[d, 2] 2^(n/d) MoebiusMu[d], {d, Divisors[n]}]/(2n);
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d b[d], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)
A001037
Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.
Original entry on oeis.org
1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806, 1908866960, 3714566310, 7233615333, 14096302710, 27487764474
Offset: 0
Binary strings (Lyndon words, cf. A102659):
a(0) = 1 = #{ "" },
a(1) = 2 = #{ "0", "1" },
a(2) = 1 = #{ "01" },
a(3) = 2 = #{ "001", "011" },
a(4) = 3 = #{ "0001", "0011", "0111" },
a(5) = 6 = #{ "00001", "00011", "00101", "00111", "01011", "01111" }.
- Michael F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988, page 171, Lemma 3.
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie. On the digraph defined by squaring mod m, when m has primitive roots. Congr. Numer. 82 (1991), 167-177.
- P. J. Freyd and A. Scedrov, Categories, Allegories, North-Holland, Amsterdam, 1990. See 1.925.
- M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983, pp. 65, 79.
- Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
- Guy Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
- M. R. Nester, (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in entries N0046 and N0287).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Seiichi Manyama, Table of n, a(n) for n = 0..3333 (terms 0..200 from T. D. Noe)
- Per Alexandersson and Joakim Uhlin, Cyclic sieving, skew Macdonald polynomials and Schur positivity, arXiv:1908.00083 [math.CO], 2019.
- Nicolas Andrews, Lucas Gagnon, Félix Gélinas, Eric Schlums, and Mike Zabrocki, When are Hopf algebras determined by integer sequences?, arXiv:2505.06941 [math.CO], 2025. See p. 17.
- Joerg Arndt, Matters Computational (The Fxtbook), pp.379-383, pp.843-845.
- Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See 3rd line of Table 1 (p. 6).
- E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie, On a digraph defined by squaring modulo n, Fibonacci Quart. 30 (1992), 322-333.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Émilie Charlier, Manon Philibert, and Manon Stipulanti, Nyldon words, arXiv:1804.09735 [math.CO], 2018. Also J. Comb. Thy. A, 167 (2019), 60-90.
- R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209.
- J. Demongeot, M. Noual and S. Sene, On the number of attractors of positive and negative threshold Boolean automata circuits, 2010 IEEE 24th Intl. Conf. Advan. Inf. Network. Appl. Workshops (WAINA), p 782-789.
- Joscha Diehl, Rosa Preiß, and Jeremy Reizenstein, Conjugation, loop and closure invariants of the iterated-integrals signature, arXiv:2412.19670 [math.RA], 2024. See p. 6.
- Bau-Sen Du, The Minimal Number of Periodic Orbits of Periods Guaranteed in Sharkovskii's Theorem, arXiv:0706.2297 [math.DS], 2007; Bull. Austral. Math. Soc. 31(1985), 89-103. Corrigendum: 32 (1985), 159.
- S. V. Duzhin and D. V. Pasechnik, Groups acting on necklaces and sandpile groups, 2014. See page 85. - _N. J. A. Sloane_, Jun 30 2014
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- M. A. Harrison, On the classification of Boolean functions by the general linear and affine groups, J. Soc. Indust. Appl. Math. 12 (1964) 285-299.
- A. Knopfmacher and M. E. Mays, Graph Compositions I: Basic enumeration, Integers 1 (2001), A4, eq. (1).
- T. Laarhoven and B de Weger, The Collatz conjecture and De Bruijn graphs, arXiv preprint arXiv:1209.3495 [math.NT], 2012. - From _N. J. A. Sloane_, Dec 27 2012
- J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arithmetica, LVI (1990), pp. 33-53.
- Piotr Laskawiec, Joint Spectral Radius with focus on pairs of 2 X 2 matrices, Ph. D. Dissertation, Penn. State Univ. (2025). See p. 55.
- R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, sequence gamma_{2,j}^(T), arXiv:0903.2514 [math.NT], 2009-2011.
- Ueli M. Maurer, Asymptotically-tight bounds on the number of cycles in generalized de Bruijn-Good graphs, Discrete applied mathematics 37 (1992): 421-436. See Table 1.
- Romeo Meštrović, Different classes of binary necklaces and a combinatorial method for their enumerations, arXiv:1804.00992 [math.CO], 2018.
- H. Meyn and W. Götz, Self-reciprocal polynomials over finite fields, Séminaire Lotharingien de Combinatoire, B21d (1989), 8 pp.
- J.-F. Michon and P. Ravache, On different families of invariant irreducible polynomials over F_2, Finite fields & Applications 16 (2010) 163-174.
- Hans Z. Munthe-Kaas and Jonatan Stava, Lie Admissible Triple Algebras: The Connection Algebra of Symmetric Spaces, arXiv:2306.15582 [math.DG], 2023.
- Mathilde Noual, Dynamics of Circuits and Intersecting Circuits, in Language and Automata Theory and Applications, Lecture Notes in Computer Science, 2012, Volume 7183/2012, 433-444, ArXiv 1011.3930 [cs.DM]. - _N. J. A. Sloane_, Jul 07 2012
- Cormac O'Sullivan, Topographs for binary quadratic forms and class numbers, arXiv:2408.14405 [math.NT], 2024. See p. 30.
- George Petrides and Johannes Mykkeltveit, On the Classification of Periodic Binary Sequences into Nonlinear Complexity Classes, in Sequences and Their Applications SETA 2006, Lecture Notes in Computer Science, Volume 4086/2006, pp 209-222. [From _N. J. A. Sloane_, Jul 09 2009]
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Primitive and Irreducible Polynomials
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Troy Vasiga and Jeffrey Shallit, On the iteration of certain quadratic maps over GF(p), Discrete Mathematics, Volume 277, Issues 1-3, 2004, pages 219-240.
- G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
- M. Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
- Eric Weisstein's World of Mathematics, Irreducible Polynomial
- Eric Weisstein's World of Mathematics, Lyndon Word
- Wikipedia, Lyndon word
- Index entries for sequences related to Lyndon words
- Index entries for "core" sequences
Row sums of
A051168, which gives the number of Lyndon words with fixed number of zeros and ones.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7):
A058943,
A058944,
A058948,
A058945,
A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7):
A058947,
A058949,
A058952,
A058950,
A058951.
See also
A102659 for the list of binary Lyndon words themselves.
-
a001037 0 = 1
a001037 n = (sum $ map (\d -> (a000079 d) * a008683 (n `div` d)) $
a027750_row n) `div` n
-- Reinhard Zumkeller, Feb 01 2013
-
with(numtheory): A001037 := proc(n) local a,d; if n = 0 then RETURN(1); else a := 0: for d in divisors(n) do a := a+mobius(n/d)*2^d; od: RETURN(a/n); fi; end;
-
f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[n/d]*2^d/n)]; Array[f, 32]
-
A001037(n)=if(n>1,sumdiv(n,d,moebius(d)*2^(n/d))/n,n+1) \\ Edited by M. F. Hasler, Jan 11 2016
-
{a(n)=polcoeff(1-sum(k=1,n,moebius(k)/k*log(1-2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
-
a(n)=if(n>1,my(s);forstep(i=2^n+1,2^(n+1),2,s+=polisirreducible(Mod(1,2) * Pol(binary(i))));s,n+1) \\ Charles R Greathouse IV, Jan 26 2012
-
from sympy import divisors, mobius
def a(n): return sum(mobius(d) * 2**(n//d) for d in divisors(n))/n if n>1 else n + 1 # Indranil Ghosh, Apr 26 2017
A000031
Number of n-bead necklaces with 2 colors when turning over is not allowed; also number of output sequences from a simple n-stage cycling shift register; also number of binary irreducible polynomials whose degree divides n.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192, 4116, 7712, 14602, 27596, 52488, 99880, 190746, 364724, 699252, 1342184, 2581428, 4971068, 9587580, 18512792, 35792568, 69273668, 134219796, 260301176, 505294128, 981706832
Offset: 0
For n=3 and n=4 the necklaces are {000,001,011,111} and {0000,0001,0011,0101,0111,1111}.
The analogous shift register sequences are {000..., 001001..., 011011..., 111...} and {000..., 00010001..., 00110011..., 0101..., 01110111..., 111...}.
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, pp. 120, 172.
- May, Robert M. "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).
- Seiichi Manyama, Table of n, a(n) for n = 0..3333 (first 201 terms from T. D. Noe)
- Nicolás Álvarez, Verónica Becher, Martín Mereb, Ivo Pajor, and Carlos Miguel Soto, On extremal factors of de Bruijn-like graphs, arXiv:2308.16257 [math.CO], 2023. See references.
- Joerg Arndt, Matters Computational (The Fxtbook), p. 151, pp. 379-383.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- J.-M. Champarnaud, G. Hansel, and D. Perrin, Unavoidable sets of constant length, Internat. J. Alg. Comput. 14 (2004), 241-251.
- Vladimir Dotsenko and Irvin Roy Hentzel, On the conjecture of Kashuba and Mathieu about free Jordan algebras, arXiv:2507.00437 [math.RA], 2025. See p. 14.
- James East and Ron Niles, Integer polygons of given perimeter, arXiv:1710.11245 [math.CO], 2017.
- S. N. Ethier and J. Lee, Parrondo games with spatial dependence, arXiv preprint arXiv:1202.2609 [math.PR], 2012.
- S. N. Ethier, Counting toroidal binary arrays, arXiv preprint arXiv:1301.2352 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.4.7.
- N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see pages 18, 64.
- H. Fredricksen, The lexicographically least de Bruijn cycle, J. Combin. Theory, 9 (1970) 1-5.
- Harold Fredricksen, An algorithm for generating necklaces of beads in two colors, Discrete Mathematics, Volume 61, Issues 2-3, September 1986, Pages 181-188.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 2
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 130
- Juhani Karhumäki, S. Puzynina, M. Rao, and M. A. Whiteland, On cardinalities of k-abelian equivalence classes, arXiv preprint arXiv:1605.03319 [math.CO], 2016.
- Abraham Lempel, On extremal factors of the de Bruijn graph, J. Combinatorial Theory Ser. B 11 1971 17--27. MR0276126 (43 #1874).
- Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
- Johannes Mykkeltveit, A proof of Golomb's conjecture for the de Bruijn graph, J. Combinatorial Theory Ser. B 13 (1972), 40-45. MR0323629 (48 #1985).
- Matthew Parker, The first 25K terms (7-Zip compressed file) [a large file]
- J. Riordan, Letter to N. J. A. Sloane, Jul. 1978
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Ville Salo, Universal gates with wires in a row, arXiv:1809.08050 [math.GR], 2018.
- J. A. Siehler, The Finite Lamplighter Groups: A Guided Tour, College Mathematics Journal, Vol. 43, No. 3 (May 2012), pp. 203-211.
- N. J. A. Sloane, On single-deletion-correcting codes
- N. J. A. Sloane, On single-deletion-correcting codes, arXiv:math/0207197 [math.CO], 2002; in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- David Thomson, Musical Polygons, Mathematics Today, Vol. 57, No. 2 (April 2021), pp. 50-51.
- R. C. Titsworth, Equivalence classes of periodic sequences, Illinois J. Math., 8 (1964), 266-270.
- A. M. Uludag, A. Zeytin and M. Durmus, Binary Quadratic Forms as Dessins, 2012.
- Eric Weisstein's World of Mathematics, Necklace
- Wolfram Research, Number of necklaces
- Index entries for "core" sequences
- Index entries for sequences related to necklaces
A008965(n) = a(n) - 1 allowing different offsets.
-
a000031 0 = 1
a000031 n = (`div` n) $ sum $
zipWith (*) (map a000010 divs) (map a000079 $ reverse divs)
where divs = a027750_row n
-- Reinhard Zumkeller, Mar 21 2013
-
with(numtheory); A000031 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+phi(d)*2^(n/d); od; RETURN(s/n); fi; end; [ seq(A000031(n), n=0..50) ];
-
a[n_] := Sum[If[Mod[n, d] == 0, EulerPhi[d] 2^(n/d), 0], {d, 1, n}]/n
a[n_] := Fold[#1 + 2^(n/#2) EulerPhi[#2] &, 0, Divisors[n]]/n (* Ben Branman, Jan 08 2011 *)
Table[Expand[CycleIndex[CyclicGroup[n], t] /. Table[t[i]-> 2, {i, 1, n}]], {n,0, 30}] (* Geoffrey Critzer, Mar 06 2011*)
a[0] = 1; a[n_] := DivisorSum[n, EulerPhi[#]*2^(n/#)&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2016 *)
mx=40; CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-2*x^i]/i,{i,1,mx}],{x,0,mx}],x] (*Herbert Kociemba, Oct 29 2016 *)
-
{A000031(n)=if(n==0,1,sumdiv(n,d,eulerphi(d)*2^(n/d))/n)} \\ Randall L Rathbun, Jan 11 2002
-
from sympy import totient, divisors
def A000031(n): return sum(totient(d)*(1<Chai Wah Wu, Nov 16 2022
There is an error in Fig. M3860 in the 1995 Encyclopedia of Integer Sequences: in the third line, the formula for
A000031 = M0564 should be (1/n) sum phi(d) 2^(n/d).
A027375
Number of aperiodic binary strings of length n; also number of binary sequences with primitive period n.
Original entry on oeis.org
0, 2, 2, 6, 12, 30, 54, 126, 240, 504, 990, 2046, 4020, 8190, 16254, 32730, 65280, 131070, 261576, 524286, 1047540, 2097018, 4192254, 8388606, 16772880, 33554400, 67100670, 134217216, 268419060, 536870910, 1073708010, 2147483646, 4294901760
Offset: 0
a(3) = 6 = |{ 001, 010, 011, 100, 101, 110 }|. - corrected by _Geoffrey Critzer_, Dec 07 2014
- J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 13. - From N. J. A. Sloane, Oct 26 2012
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 164.
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- Mark I. Krusemeyer, George T. Gilbert, Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 128, pp. 225-227.
- T. D. Noe, Table of n, a(n) for n = 0..300
- J.-P. Allouche, Note on the transcendence of a generating function. In A. Laurincikas and E. Manstavicius, editors, Proceedings of the Palanga Conference for the 75th birthday of Prof. Kubilius, New trends in Probab. and Statist., Vol. 4, pages 461-465, 1997.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], Dec 25 2012.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- John D. Cook, Counting primitive bit strings (2014).
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 85.
- Guilhem Gamard, Gwenaël Richomme, Jeffrey Shallit and Taylor J. Smith, Periodicity in rectangular arrays, arXiv:1602.06915 [cs.DM], 2016; Information Processing Letters 118 (2017) 58-63. See Table 1.
- O. Georgiou, C. P. Dettmann and E. G. Altmann, Faster than expected escape for a class of fully chaotic maps, arXiv preprint arXiv:1207.7000 [nlin.CD], 2012. - From _N. J. A. Sloane_, Dec 23 2012
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- David W. Lyons, Cristina Mullican, Adam Rilatt, and Jack D. Putnam, Werner states from diagrams, arXiv:2302.05572 [quant-ph], 2023.
- Robert M. May, Simple mathematical models with very complicated dynamics, Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - _N. J. A. Sloane_, Mar 17 2019
- M. B. Nathanson, Primitive sets and Euler phi function for subsets of {1,2,...,n}, arXiv:math/0608150 [math.NT], 2006-2007.
- P. Pongsriiam, Relatively Prime Sets, Divisor Sums, and Partial Sums, arXiv:1306.4891 [math.NT], 2013 and J. Int. Seq. 16 (2013) #13.9.1.
- P. Pongsriiam, A remark on relative prime sets, arXiv:1306.2529 [math.NT], 2013.
- P. Pongsriiam, A remark on relative prime sets, Integers 13 (2013), A49.
- R. C. Read, Combinatorial problems in the theory of music, Disc. Math. 167/168 (1997) 543-551, sequence A(n).
- M. Tang, Relatively Prime Sets and a Phi Function for Subsets of {1, 2, ... , n}, J. Int. Seq. 13 (2010) # 10.7.6.
- László Tóth, Menon-type identities concerning subsets of the set {1,2,...,n}, arXiv:2109.06541 [math.NT], 2021.
A038199 and
A056267 are essentially the same sequence with different initial terms.
-
a027375 n = n * a001037 n -- Reinhard Zumkeller, Feb 01 2013
-
with(numtheory): A027375 :=n->add( mobius(d)*2^(n/d), d = divisors(n)); # N. J. A. Sloane, Sep 25 2012
-
Table[ Apply[ Plus, MoebiusMu[ n / Divisors[n] ]*2^Divisors[n] ], {n, 1, 32} ]
a[0]=0; a[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&]; Array[a, 40, 0] (* Jean-François Alcover, Dec 01 2015 *)
-
a(n) = sumdiv(n,d,moebius(n\d)*2^d);
-
from sympy import mobius, divisors
def a(n): return sum(mobius(d)*2**(n//d) for d in divisors(n))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 28 2017
A000048
Number of n-bead necklaces with beads of 2 colors and primitive period n, when turning over is not allowed but the two colors can be interchanged.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 9, 16, 28, 51, 93, 170, 315, 585, 1091, 2048, 3855, 7280, 13797, 26214, 49929, 95325, 182361, 349520, 671088, 1290555, 2485504, 4793490, 9256395, 17895679, 34636833, 67108864, 130150493, 252645135, 490853403, 954437120, 1857283155
Offset: 0
a(5) = 3 corresponding to the necklaces 00001, 00111, 01011.
a(6) = 5 from 000001, 000011, 000101, 000111, 001011.
- B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
- H. Kawakami, Table of rotation sequences of x_{n+1} = x_n^2 - lambda, pp. 73-92 of G. Ikegami, Editor, Dynamical Systems and Nonlinear Oscillations, Vol. 1, World Scientific, 1986.
- Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..3320 (terms 0..200 from T. D. Noe)
- Joerg Arndt, Matters Computational (The Fxtbook), p.408 and p.848.
- L. Carlitz, A theorem of Dickson on irreducible polynomials, Proc. Amer. Math. Soc. 3, (1952). 693-700.
- CombOS - Combinatorial Object Server, Generate necklaces, Lyndon words, chord diagrams, and relatives
- J. Demongeot, M. Noual and S. Sene, On the number of attractors of positive and negative threshold Boolean automata circuits, hal-00647877 preprint (2009). [From Mathilde Noual (mathilde.noual(AT)ens-lyon.fr), Mar 03 2009]
- N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
- H. L. Fisher, Letter to N. J. A. Sloane, Mar 16 1989
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- R. W. Hall and P. Klingsberg, Asymmetric rhythms and tiling canons, Amer. Math. Monthly, 113 (2006), 887-896.
- J. E. Iglesias, A formula for the number of closest packings of equal spheres having a given repeat period, Z. Krist. 155 (1981) 121-127, Table 2.
- J. E. Iglesias, Enumeration of polytypes MX and MX_2 through the use of the symmetry of the Zhadanov symbol, Acta Cryst. A 62 (3) (2006) 178-194, Table 1.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- A. A. Kulkarni, N. Kiyavash and R. Sreenivas, On the Varshamov-Tenengolts Construction on Binary Strings, 2013.
- R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (Jun 10, 1976), 459-467.
- N. Metropolis, M. L. Stein and P. R. Stein, On finite limit sets for transformations on the unit interval, J. Combin. Theory, A 15 (1973), 25-44; reprinted in P. Cvitanovic, ed., Universality in Chaos, Hilger, Bristol, 1986, pp. 187-206.
- H. Meyn and W. Götz, Self-reciprocal polynomials over finite fields, Séminaire Lotharingien de Combinatoire, B21d (1989), 8 pp.
- Simon Michalowsky, Bahman Gharesifard, Christian Ebenbauer, A Lie bracket approximation approach to distributed optimization over directed graphs, arXiv:1711.05486 [math.OC], 2017.
- Tilman Piesk, Lists of the three sets of necklaces for n=1..12
- R. Pries and C. Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, arXiv preprint arXiv:1302.6261 [math.NT], 2013.
- Frank Ruskey, Number of q-ary Lyndon words with given trace mod q
- Frank Ruskey, Number of Lyndon words over GF(q) with given trace
- N. J. A. Sloane, On single-deletion-correcting codes, arXiv:math/0207197 [math.CO], 2002; in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- N. J. A. Sloane, On single-deletion-correcting codes
- B. R. Smith, Reducing quadratic forms by kneading sequences, Journal of Integer Sequences, 17 (2014), article 14.11.8.
- P. R. Stein, Letter to N. J. A. Sloane, Jun 02 1971
- J.-Y. Thibon, The cycle enumerator of unimodal permutations, arXiv:math/0102051 [math.CO], 2001.
- Index entries for "core" sequences
- Index entries for sequences related to Lyndon words
- Index entries for sequences related to subset sums modulo m
Very close to
A006788 [Fisher, 1989].
-
with(numtheory); A000048 := proc(n) local d,t1; if n = 0 then RETURN(1) else t1 := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t1 := t1+mobius(d)*2^(n/d)/(2*n); fi; od; RETURN(t1); fi; end;
-
a[n_] := Total[ MoebiusMu[#]*2^(n/#)& /@ Select[ Divisors[n], OddQ]]/(2n); a[0] = 1; Table[a[n], {n,0,35}] (* Jean-François Alcover, Jul 21 2011 *)
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, MoebiusMu[#] 2^(n/#) &, OddQ] / (2 n)]; (* Michael Somos, Dec 20 2014 *)
-
A000048(n) = sumdiv(n,d,(d%2)*(moebius(d)*2^(n/d)))/(2*n) \\ Michael B. Porter, Nov 09 2009
-
L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
a(n) = sum(k=0, n, if( (n+k)%2==1, L(n, k), 0 ) ) / n;
vector(55,n,a(n)) \\ Joerg Arndt, Jun 28 2012
-
from sympy import divisors, mobius
def a(n): return 1 if n<1 else sum(mobius(d)*2**(n//d) for d in divisors(n) if d%2)//(2*n) # Indranil Ghosh, Apr 28 2017
A054660
Number of monic irreducible polynomials over GF(4) of degree n with fixed nonzero trace.
Original entry on oeis.org
1, 2, 5, 16, 51, 170, 585, 2048, 7280, 26214, 95325, 349520, 1290555, 4793490, 17895679, 67108864, 252645135, 954437120, 3616814565, 13743895344, 52357696365, 199911205050, 764877654105, 2932031006720, 11258999068416
Offset: 1
a(3; y)=5 since the five Lyndon words over GF(4) of trace y and length 3 are { 00y, 01x, 0x1, 11y, xxy }; the five Lyndon words over Z_4 of trace 1 (mod 4) and length 3 are { 001, 023, 032, 113, 122 }.
A054661
Number of monic irreducible polynomials over GF(4) with zero trace.
Original entry on oeis.org
1, 0, 5, 12, 51, 160, 585, 2016, 7280, 26112, 95325, 349180, 1290555, 4792320, 17895679, 67104768, 252645135, 954422560, 3616814565, 13743842916, 52357696365, 199911014400, 764877654105, 2932030307680, 11258999068416
Offset: 1
A327693
Triangle read by rows: T(n,k) is the number of n-bead necklace structures which are not self-equivalent under a nonzero rotation using exactly k different colored beads.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 3, 5, 2, 0, 0, 4, 13, 9, 2, 0, 0, 9, 43, 50, 20, 3, 0, 0, 14, 116, 206, 127, 31, 3, 0, 0, 28, 335, 862, 772, 293, 51, 4, 0, 0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 0
Offset: 1
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 3, 5, 2, 0;
0, 4, 13, 9, 2, 0;
0, 9, 43, 50, 20, 3, 0;
0, 14, 116, 206, 127, 31, 3, 0;
0, 28, 335, 862, 772, 293, 51, 4, 0;
0, 48, 920, 3384, 4226, 2263, 580, 72, 4, 0;
...
T(6, 4) = 9: {aaabcd, aabacd, aabcad, aabbcd, aabcbd, aabcdb, aacbdb, ababcd, abacbd}. Compared with A107424 the patterns {abacad, aacbbd, abcabd, acabdb} are excluded.
Cf.
A324802 (not self-equivalent under reversal and rotations).
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, moebius(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) }
A054662
Number of monic irreducible polynomials over GF(5) with fixed nonzero trace.
Original entry on oeis.org
1, 2, 8, 30, 125, 516, 2232, 9750, 43400, 195250, 887784, 4068740, 18780048, 87191964, 406901000, 1907343750, 8975758272, 42385503300, 200773540296, 953674218750, 4541306267856, 21674415838068, 103660251783288
Offset: 1
-
a(n) = sumdiv(n, d, (gcd(d, 5)==1)*(moebius(d)*5^(n/d)))/(5*n); \\ Seiichi Manyama, May 29 2024
A054666
Number of 6-ary Lyndon words with trace 1 mod 6.
Original entry on oeis.org
1, 3, 12, 54, 259, 1296, 6665, 34992, 186624, 1007769, 5496925, 30233088, 167444795, 932906715, 5224277604, 29386561536, 165947641615, 940369969152, 5345260877285, 30467987000514, 174102782860140, 997134120017175
Offset: 1
Showing 1-10 of 14 results.
Comments