cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051843 Partial sums of A002419.

Original entry on oeis.org

0, 1, 11, 51, 161, 406, 882, 1722, 3102, 5247, 8437, 13013, 19383, 28028, 39508, 54468, 73644, 97869, 128079, 165319, 210749, 265650, 331430, 409630, 501930, 610155, 736281, 882441, 1050931, 1244216, 1464936, 1715912, 2000152, 2320857, 2681427
Offset: 0

Views

Author

Barry E. Williams, Dec 13 1999

Keywords

Comments

5-dimensional form of octagonal-based pyramidal numbers. - Derek I. Thomas (dithom02(AT)louisville.edu), Jun 30 2007
Convolution of triangular numbers (A000217) and octagonal numbers (A000567). [Bruno Berselli, Jul 21 2015]
Also the number of 4-cycles in the (n+2)-triangular honeycomb bishop graph. - Eric W. Weisstein, Aug 10 2017

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • H. J. Ryser, Combinatorial Mathematics, Carus Mathematical Monographs No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=5).
Cf. A034827 (3-cycles in the triangular honeycomb bishop graph), A290775 (5-cycles), A290779 (6-cycles).

Programs

  • Mathematica
    Join[{0}, Accumulate[LinearRecurrence[{5, -10, 10, -5, 1},{1, 10, 40, 110, 245}, 40]]] (* Harvey P. Dale, Nov 30 2014 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 11, 51, 161, 406}, 40] (* Harvey P. Dale, Nov 30 2014 *)
    Table[(6 n - 1) Binomial[n + 3, 4]/5, {n, 0, 20}] (* Eric W. Weisstein, Aug 10 2017 *)

Formula

a(n) = C(n+3,4) * (6*n-1)/5
G.f.: x*(1+5*x)/(1-x)^6.
a(n) = n*(n+1)*(n+2)*(n+3)*(6n-1)/120. - Derek I. Thomas (dithom02(AT)louisville.edu), Jun 30 2007

Extensions

a(1) corrected by Gael Linder (linder.gael(AT)wanadoo.fr), Oct 31 2007
a(0) prepended by Joerg Arndt, Jun 26 2013