A051865 13-gonal (or tridecagonal) numbers: a(n) = n*(11*n - 9)/2.
0, 1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, 738, 871, 1015, 1170, 1336, 1513, 1701, 1900, 2110, 2331, 2563, 2806, 3060, 3325, 3601, 3888, 4186, 4495, 4815, 5146, 5488, 5841, 6205, 6580, 6966, 7363, 7771, 8190, 8620, 9061, 9513
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
Programs
-
Mathematica
CoefficientList[Series[x (1 + 10 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *) LinearRecurrence[{3,-3,1},{0,1,13},50] (* Harvey P. Dale, Jul 12 2014 *) Table[n*(11*n - 9)/2, {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
-
PARI
a(n)=(11*n^2-9*n)/2 \\ Charles R Greathouse IV, May 27 2011
Formula
a(n) = 11*n + a(n-1) - 10 with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
G.f.: x*(1+10*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(11*a(n) + 56*n + 1) = a(11*a(n) + 56*n) + a(11*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 11/13. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*(x + 11*x^2/2). - Nikolaos Pantelidis, Feb 06 2023
Comments