cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051866 14-gonal (or tetradecagonal) numbers: a(n) = n*(6*n-5).

Original entry on oeis.org

0, 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, 804, 949, 1106, 1275, 1456, 1649, 1854, 2071, 2300, 2541, 2794, 3059, 3336, 3625, 3926, 4239, 4564, 4901, 5250, 5611, 5984, 6369, 6766, 7175, 7596, 8029, 8474, 8931, 9400, 9881, 10374
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ... and the parallel line from 1, in the direction 1, 39, ..., in the square spiral whose vertices are the generalized 14-gonal numbers A195818. Also sequence found by reading the segment (0, 1) together with the line from 1, in the direction 1, 14, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
After 0, partial sums of A017533. - Bruno Berselli, Sep 11 2013
This is also a star heptagonal number: a(n) = A000566(n) + 7*A000217(n-1). - Luciano Ancora, Mar 30 2015
Starting with offset 1, this is the binomial transform of (1, 13, 12, 0, 0, 0, ...). - Gary W. Adamson, Jul 29 2015

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.

Crossrefs

Programs

Formula

G.f.: x*(1+11*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 12*n + a(n-1) - 11, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A033568(n) - 1. - Omar E. Pol, Jul 18 2012
a(12*a(n)+67*n+1) = a(12*a(n) + 67*n) + a(12*n + 1). - Vladimir Shevelev, Jan 24 2014
From Amiram Eldar, Oct 20 2020: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi + log(432))/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + 2*sqrt(3)*arccoth(sqrt(3)) - log(2))/5. (End)
Product_{n>=2} (1 - 1/a(n)) = 6/7. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*x*(1 + 6*x). - Stefano Spezia, Jun 08 2021