A051866 14-gonal (or tetradecagonal) numbers: a(n) = n*(6*n-5).
0, 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, 804, 949, 1106, 1275, 1456, 1649, 1854, 2071, 2300, 2541, 2794, 3059, 3336, 3625, 3926, 4239, 4564, 4901, 5250, 5611, 5984, 6369, 6766, 7175, 7596, 8029, 8474, 8931, 9400, 9881, 10374
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.
Links
Programs
-
Maple
A051866 := proc(n) n*(6*n-5) ; end proc: seq(A051866(n),n=0..30) ; # R. J. Mathar, Feb 05 2011
-
Mathematica
Table[n*(6*n - 5), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
-
PARI
a(n)=n*(6*n-5); \\ Joerg Arndt, Feb 01 2014
Formula
G.f.: x*(1+11*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 12*n + a(n-1) - 11, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A033568(n) - 1. - Omar E. Pol, Jul 18 2012
a(12*a(n)+67*n+1) = a(12*a(n) + 67*n) + a(12*n + 1). - Vladimir Shevelev, Jan 24 2014
From Amiram Eldar, Oct 20 2020: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi + log(432))/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + 2*sqrt(3)*arccoth(sqrt(3)) - log(2))/5. (End)
Product_{n>=2} (1 - 1/a(n)) = 6/7. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*x*(1 + 6*x). - Stefano Spezia, Jun 08 2021
Comments