A051875 23-gonal numbers: a(n) = n(21n-19)/2.
0, 1, 23, 66, 130, 215, 321, 448, 596, 765, 955, 1166, 1398, 1651, 1925, 2220, 2536, 2873, 3231, 3610, 4010, 4431, 4873, 5336, 5820, 6325, 6851, 7398, 7966, 8555, 9165, 9796, 10448, 11121, 11815, 12530, 13266, 14023, 14801, 15600
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
CoefficientList[Series[x (1 + 20 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *) Table[(21n^2 - 19n)/2, {n, 0, 39}] (* Alonso del Arte, Jan 23 2015 *) PolygonalNumber[23,Range[0,40]] (* Harvey P. Dale, Aug 01 2022 *)
-
PARI
a(n)=n*(21*n-19)/2 \\ Charles R Greathouse IV, Jan 24 2014
Formula
G.f.: x*(1+20*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 21*n + a(n-1) - 20 with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 06 2010
a(n) = A226491(n) - n. - Bruno Berselli, Jun 11 2013
a(21*a(n)+211*n+1) = a(21*a(n)+211*n) + a(21*n+1). - Vladimir Shevelev, Jan 24 2014
Product_{n>=2} (1 - 1/a(n)) = 21/23. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 21*x^2/2). - Nikolaos Pantelidis, Feb 06 2023
Comments