A051904 Minimal exponent in prime factorization of n.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1
Examples
For n = 72 = 2^3*3^2, a(72) = min(exponents) = min(3,2) = 2. For n = 72, using alternative definition: rad(72) = 6; and 6^2 = 36 divides 72 but no higher power of 6 divides 72, so a(72) = 2. For n = 432, rad(432) = 6 and 6^3 = 216 divides 432 but no higher power of 6 divides 432, therefore a(432) = 3. - _David James Sycamore_, Sep 08 2023
Links
- Daniel Forgues, Table of n, a(n) for n = 1..100000
- Cao Hui-Zhong, The Asymptotic Formulas Related to Exponents in Factoring Integers, Math. Balkanica, Vol. 5 (1991), Fasc. 2.
- Ivan Niven, Averages of Exponents in Factoring Integers, Proc. Amer. Math. Soc., Vol. 22, No. 2 (1969), pp. 356-360.
- Eric Weisstein's World of Mathematics, Niven's Constant
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Programs
-
Haskell
a051904 1 = 0 a051904 n = minimum $ a124010_row n -- Reinhard Zumkeller, Jul 15 2012
-
Maple
a := proc (n) if n = 1 then 0 else min(seq(op(2, op(j, op(2, ifactors(n)))), j = 1 .. nops(op(2, ifactors(n))))) end if end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, May 20 2015
-
Mathematica
Table[If[n == 1, 0, Min @@ Last /@ FactorInteger[n]], {n, 100}] (* Ray Chandler, Jan 24 2006 *)
-
PARI
a(n)=vecmin(factor(n)[,2]) \\ Charles R Greathouse IV, Nov 19 2012
-
Python
from sympy import factorint def a(n): f = factorint(n) l = [f[p] for p in f] return 0 if n == 1 else min(l) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 13 2017
-
Scheme
(define (A051904 n) (cond ((= 1 n) 0) ((= 1 (A001221 n)) (A001222 n)) (else (min (A067029 n) (A051904 (A028234 n)))))) ;; Antti Karttunen, Jul 12 2017
Formula
a(1) = 0, for n > 1, if A001221(n) = 1 (when n is in A000961), a(n) = A001222(n), otherwise a(n) = min(A067029(n), a(A028234(n))). - Antti Karttunen, Jul 12 2017
Sum_{k=1..n} a(k) ~ n + zeta(3/2)*n^(1/2)/zeta(3) + (zeta(2/3)/zeta(2) + c0)*n^(1/3), where c0 = A362974 = Product_{p prime} (1 + 1/p^(4/3) + 1/p^(5/3)) [Cao Hui-Zhong, 1991]. - Vaclav Kotesovec, Mar 24 2025
Comments