cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 102 results. Next

A157754 a(1) = 0, a(n) = lcm(A051904(n), A051903(n)) for n >= 2.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2009

Keywords

Comments

a(n) for n >= 2 equals LCM of minimum and maximum exponents in the prime factorization of n.
a(n) for n >= 2 deviates from A072411, first different term is a(360), a(360) = 3, A072411(360) = 6.

Examples

			For n = 12 = 2^2 * 3^1 we have a(12) = lcm(2,1) = 2.
For n = 144 = 2^4 * 3^2 we have a(144) = lcm(4,2) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[LCM @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[,2]); lcm(vecmin(e), vecmax(e))); \\ Amiram Eldar, Sep 11 2024

Formula

a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1) k = natural numbers (A000027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150. - Amiram Eldar, Sep 11 2024

A158378 a(1) = 0, a(n) = gcd(A051904(n), A051903(n)) for n >= 2.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 17 2009

Keywords

Comments

a(n) for n >= 2 equals GCD of minimum and maximum exponents in the prime factorization of n.
a(n) for n >= 2 it deviates from A052409(n), first different term is a(10800) = a(2^4*3^3*5^2), a(10800) = gcd(2,4) = 2, A052409(10800) = gcd(2,3,4) = 1.

Examples

			For n = 12 = 2^2 * 3^1 we have a(12) = gcd(2,1) = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A051903(n) = if((1==n),0,vecmax(factor(n)[, 2]));
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A158378(n) = gcd(A051903(n),A051904(n)); \\ Antti Karttunen, Jul 12 2017
    
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[,2]); gcd(vecmin(e), vecmax(e))); \\ Amiram Eldar, Sep 11 2024

Formula

For n >= 2 holds: a(n)*A157754(n) = A051904(n)*A051903(n).
a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1), k = natural numbers (A000027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1. - Amiram Eldar, Sep 11 2024

A304776 A weakening function. a(n) = n / A007947(n)^(A051904(n) - 1) where A007947 is squarefree kernel and A051904 is minimum prime exponent.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 7, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 2, 65, 66, 67, 68, 69, 70, 71, 12, 73, 74, 75, 76, 77, 78, 79, 80, 3, 82, 83
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

This function takes powerful numbers (A001694) to weak numbers (A052485) and leaves weak numbers unchanged.
First differs from A052410 at a(72) = 12, A052410(72) = 72.

Crossrefs

Programs

  • Mathematica
    spr[n_]:=Module[{f,m},f=FactorInteger[n];m=Min[Last/@f];n/Times@@First/@f^(m-1)];
    Array[spr,100]
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A304776(n) = (n/(A007947(n)^(A051904(n)-1))); \\ Antti Karttunen, May 19 2022
    
  • PARI
    a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); n / vecprod(p)^(vecmin(e) - 1)); \\ Amiram Eldar, Sep 12 2024

Formula

a(n) = n / A354090(n). - Antti Karttunen, May 19 2022
Sum_{k=1..n} a(k) ~ n^2 / 2. - Amiram Eldar, Sep 12 2024

Extensions

Data section extended up to a(83) by Antti Karttunen, May 19 2022

A380266 a(n) is the numerator of the mean value of A051904(k) at the range k = 1..n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 5, 4, 13, 14, 5, 16, 17, 6, 11, 23, 4, 25, 13, 9, 14, 29, 5, 32, 33, 4, 37, 38, 13, 40, 45, 46, 47, 48, 25, 51, 26, 53, 27, 55, 4, 57, 29, 59, 30, 61, 31, 64, 13, 22, 67, 68, 23, 14, 71, 24, 73, 74, 5, 76, 77, 26, 21, 17, 43, 87, 22, 89, 9
Offset: 1

Views

Author

Amiram Eldar, Jan 18 2025

Keywords

Examples

			Fractions begin with 0, 1/2, 2/3, 1, 1, 1, 1, 5/4, 4/3, 13/10, 14/11, 5/4, ...
		

Crossrefs

Cf. A051904, A090699, A380267 (denominators).

Programs

  • Mathematica
    f[n_] := Min[FactorInteger[n][[;;, 2]]]; f[1] = 0; With[{m = 100}, Numerator[Accumulate[Array[f, m]] / Range[m]]]
  • PARI
    lista(nmax) = {my(s = 0); print1(0, ", "); for(n = 2, nmax, s += vecmin(factor(n)[,2]);  print1(numerator(s/n), ", "));}

Formula

a(n) = numerator((Sum_{k=1..n} A051904(k))/n).
a(n)/A380267(n) = 1 + c/sqrt(n) + o(1/sqrt(n)), where c = zeta(3/2)/zeta(3) (A090699).

A380267 a(n) is the denominator of the mean value of A051904(k) at the range k = 1..n.

Original entry on oeis.org

1, 2, 3, 1, 1, 1, 1, 4, 3, 10, 11, 4, 13, 14, 5, 8, 17, 3, 19, 10, 7, 11, 23, 4, 25, 26, 3, 28, 29, 10, 31, 32, 33, 34, 35, 18, 37, 19, 39, 20, 41, 3, 43, 22, 45, 23, 47, 24, 49, 10, 17, 52, 53, 18, 11, 56, 19, 58, 59, 4, 61, 62, 21, 16, 13, 33, 67, 17, 69, 7
Offset: 1

Views

Author

Amiram Eldar, Jan 18 2025

Keywords

Crossrefs

Cf. A051904, A380266 (numerators).

Programs

  • Mathematica
    f[n_] := Min[FactorInteger[n][[;;, 2]]]; f[1] = 0; With[{m = 100}, Denominator[Accumulate[Array[f, m]] / Range[m]]]
  • PARI
    lista(nmax) = {my(s = 0); print1(1, ", "); for(n = 2, nmax, s += vecmin(factor(n)[,2]);  print1(denominator(s/n), ", "));}

Formula

a(n) = denominator((Sum_{k=1..n} A051904(k))/n).

A093770 Non-perfect powers k for which q = A051903(k)/A051904(k) is an integer, A051904(k) > 1.

Original entry on oeis.org

10800, 16200, 18000, 21168, 31752, 40500, 43200, 45000, 49392, 52272, 67500, 72000, 73008, 78408, 84672, 98000, 109512, 111132, 124848, 137200, 145800, 155952, 172800, 172872, 187272, 191664, 197568, 209088, 228528, 233928, 242000
Offset: 1

Views

Author

Labos Elemer, Apr 16 2004

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] :=Flatten[FactorInteger[x]] ep[x_] :=Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] lf[x_] :=Length[FactorInteger[x]] Do[s1=Min[ep[n]];s2=Max[ep[n]]; If[ !Equal[s1, 1]&&IntegerQ[q=(s2/s1)]&& Equal[Union[Table[IntegerQ[Part[ep[n], j]/s1], {j, 1, lf[n]}]], {False, True}], Print[n]], {n, 2, 10000000}]

Formula

Solutions to integer values of q = A051903(x)/A051904(x), when A051904(x) > 1.

A336063 Numbers divisible by the minimal exponent in their prime factorization (A051904).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is 1 (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051904(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    h[1] = 0; h[n_] := Min[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, h[#]] &]
    Select[Range[2,100],Divisible[#,Min[FactorInteger[#][[All,2]]]]&] (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    isok(m) = if (m>1, (m % vecmin(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020

A354090 a(n) = A007947(n)^(A051904(n) - 1), where A007947 is squarefree kernel and A051904 is minimum prime exponent.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 9, 1, 1, 1, 1, 16, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]] - 1; f[[;; , 2]] = e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    A051904(n) = if((1==n),0,vecmin(factor(n)[, 2]));
    A354090(n) = (A007947(n)^(A051904(n)-1));
    
  • PARI
    a(n) = {if(n==1, 1, my(f = factor(n), e = vecmin(f[,2]) - 1); prod(i = 1, #f~, f[i,1]^e));} \\ Amiram Eldar, Feb 12 2023

Formula

a(n) = A007947(n)^(A051904(n)-1).
a(n) = n / A304776(n).

A295417 Self-inverse permutation of natural numbers: in prime factorization of n replace each positive prime exponent e with max + min - e, where max = A051903(n) and min = A051904(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 13, 14, 15, 16, 17, 12, 19, 50, 21, 22, 23, 54, 25, 26, 27, 98, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 250, 41, 42, 43, 242, 75, 46, 47, 162, 49, 20, 51, 338, 53, 24, 55, 686, 57, 58, 59, 450, 61, 62, 147, 64, 65, 66
Offset: 1

Views

Author

Rémy Sigrist, Nov 22 2017

Keywords

Comments

This sequence was inspired by A293448.
This sequence first differs from A293448 at n = 42: a(42) = 42 whereas A293448(42) = 70.
a(A293448(n)) = A293448(a(n)) for any n > 0.
a(n) = n iff n belongs to A072774.
f(n) = f(a(n)) for any n > 0 and f in { A001221, A006530, A007947, A020639, A051903, A051904 }.
The lines visible in the logarithmic scatterplot of the sequence seems to correspond to integer sets where the function A062760 is constant (see logarithmic scatterplot in Links section).

Examples

			For n = 1620:
- 1620 = 2^2 * 3^4 * 5,
- A051903(1620) = 4 and A051904(1620) = 1,
- a(1620) = 2^(4+1-2) * 3^(4+1-4) * 5^(4+1-1) = 2^3 * 3 * 5^4 = 15000.
		

Crossrefs

Programs

  • PARI
    a(n) = { my(f=factor(n)); if(#f~<=1, return(n), my(mi=vecmin(f[,2]), ma=vecmax(f[,2])); return(prod(i=1, #f~, f[i,1]^(ma+mi-f[i,2])))) }

Formula

a(n) = A007947(n)^(A051903(n) + A051904(n)) / n.

A124010 Triangle in which first row is 0, n-th row (n>1) lists the exponents of distinct prime factors ("ordered prime signature") in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1
Offset: 1

Views

Author

Keywords

Comments

A001222(n) = Sum(T(n,k), 1 <= k <= A001221(n)); A005361(n) = Product(T(n,k), 1 <= k <= A001221(n)), n>1; A051903(n) = Max(T(n,k): 1 <= k <= A001221(n)); A051904(n) = Min(T(n,k), 1 <= k <= A001221(n)); A067029(n) = T(n,1); A071178(n) = T(n,A001221(n)); A064372(n)=Sum(A064372(T(n,k)), 1 <= k <= A001221(n)). - Reinhard Zumkeller, Aug 27 2011
Any finite sequence of natural numbers appears as consecutive terms. - Paul Tek, Apr 27 2013
For n > 1: n-th row = n-th row of A067255 without zeros. - Reinhard Zumkeller, Jun 11 2013
Most often the prime signature is given as a sorted representative of the multiset of the nonzero exponents, either in increasing order, which yields A118914, or, most commonly, in decreasing order, which yields A212171. - M. F. Hasler, Oct 12 2018

Examples

			Initial values of exponents are:
1, [0]
2, [1]
3, [1]
4, [2]
5, [1]
6, [1, 1]
7, [1]
8, [3]
9, [2]
10, [1, 1]
11, [1]
12, [2, 1]
13, [1]
14, [1, 1]
15, [1, 1]
16, [4]
17, [1]
18, [1, 2]
19, [1]
20, [2, 1]
...
		

Crossrefs

Cf. A027748, A001221 (row lengths, n>1), A001222 (row sums), A027746, A020639, A064372, A067029 (first column).
Sorted rows: A118914, A212171.

Programs

  • Haskell
    a124010 n k = a124010_tabf !! (n-1) !! (k-1)
    a124010_row 1 = [0]
    a124010_row n = f n a000040_list where
       f 1 _      = []
       f u (p:ps) = h u 0 where
         h v e | m == 0 = h v' (e + 1)
               | m /= 0 = if e > 0 then e : f v ps else f v ps
               where (v',m) = divMod v p
    a124010_tabf = map a124010_row [1..]
    -- Reinhard Zumkeller, Jun 12 2013, Aug 27 2011
    
  • Maple
    expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end; # N. J. A. Sloane, Dec 20 2007
    PrimeSignature := proc(n) local F, e, k; F := ifactors(n)[2]; [seq(e, e = seq(F[k][2], k = 1..nops(F)))] end:
    ListTools:-Flatten([[0], seq(PrimeSignature(n), n = 1..73)]); # Peter Luschny, Jun 15 2025
  • Mathematica
    row[1] = {0}; row[n_] := FactorInteger[n][[All, 2]] // Flatten; Table[row[n], {n, 1, 80}] // Flatten (* Jean-François Alcover, Aug 19 2013 *)
  • PARI
    print1(0); for(n=2,50, f=factor(n)[,2]; for(i=1,#f,print1(", "f[i]))) \\ Charles R Greathouse IV, Nov 07 2014
    
  • PARI
    A124010_row(n)=if(n,factor(n)[,2]~,[0]) \\ M. F. Hasler, Oct 12 2018
    
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        return [0] if n==1 else [f[i] for i in f]
    for n in range(1, 21): print(a(n)) # Indranil Ghosh, May 16 2017

Formula

n = Product_k A027748(n,k)^a(n,k).

Extensions

Name edited by M. F. Hasler, Apr 08 2022
Showing 1-10 of 102 results. Next