A051913 Numbers k such that phi(k)/phi(phi(k)) = 3.
7, 9, 13, 14, 18, 19, 21, 26, 27, 28, 35, 36, 37, 38, 39, 42, 45, 52, 54, 56, 57, 63, 65, 70, 72, 73, 74, 76, 78, 81, 84, 90, 91, 95, 97, 104, 105, 108, 109, 111, 112, 114, 117, 119, 126, 130, 133, 135, 140, 144, 146, 148, 152, 153, 156, 162, 163, 168, 171, 180, 182
Offset: 1
Examples
Phi(999) = Phi(3*3*3*37) = 648 = 8*81.
References
- George E. Martin, Geometric Constructions, Springer, 1997, p. 140.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- C. R. Videla, On points constructible from conics, Mathematical Intelligencer, 19, No. 2, pp. 53-57 (1997).
Programs
-
Magma
[n: n in [1..200] | EulerPhi(n)/EulerPhi(EulerPhi(n)) eq 3]; // Vincenzo Librandi, Apr 17 2015
-
Mathematica
lf[x_] := Length[FactorInteger[x]] eu[x_] := EulerPhi[x] Do[s=lf[eu[n]]; If[Equal[s, 2]&&Equal[Mod[eu[n], 6], 0], Print[n]], {n, 1, 1000}] (* Labos Elemer, Dec 28 2001 *) f[n_] := Block[{m = n}, If[m > 0, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; m == 1]; fQ[n_] := Block[{pff = Select[ FactorInteger[n], #[[1]] > 3 &]}, pf = Flatten[{2, Table[ #[[1]], {1}] & /@ pff}]; pfe = Union[ Flatten[{1, Table[ #[[2]], {1}] & /@ pff}]]; If[ Union[f /@ (pf - 1)] == {True} && pfe == {1} && !IntegerQ[ Log[2, EulerPhi[ n]]], True, False]]; Select[ Range[184], fQ[ # ] &] (* Robert G. Wilson v, Apr 05 2005 *) Select[Range[200],EulerPhi[#]/EulerPhi[EulerPhi[#]]==3&] (* Harvey P. Dale, Jul 11 2025 *)
-
Python
from itertools import count, islice from sympy import primefactors, totient def A051913_gen(): # generator of terms yield from filter(lambda n: primefactors(totient(n)) == [2,3], count(1)) A051913_list = list(islice(A051913_gen(),30)) # Chai Wah Wu, Apr 02 2025
Formula
Numbers k of the form 2^a*3^b*p*q*r*..., where p, q, r, ... are distinct primes of the form 2^x*3^y + 1 (i.e., belong to A005109) and phi(k) is not a power of 2 [Videla]. - Robert G. Wilson v, Apr 05 2005
Extensions
Additional comments from Labos Elemer, Dec 28 2001
Additional comments from Benoit Cloitre, Jan 26 2002
Edited by N. J. A. Sloane, Apr 21 2007
Entries checked by Don Reble, Apr 23 2007
Comments