cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052013 Primes that are congruent to -1 mod n, where n is the index of the prime.

Original entry on oeis.org

2, 3, 5, 7, 29, 349, 359, 1091, 3079, 8423, 64579, 64609, 64709, 481043, 481067, 3524317, 3524387, 9559799, 9560009, 9560039, 25874767, 70115921, 189962009, 189962189, 189964241, 189964259, 189964331, 189964367, 189968741, 189968921
Offset: 1

Views

Author

Patrick De Geest, Nov 15 1999

Keywords

Examples

			29 is the tenth prime and 29 == -1 mod 10, so 29 is in the sequence.
31 is the eleventh prime but 31 == 9 mod 11, so 31 is not in the sequence.
		

Crossrefs

Subsequence of A162567.

Programs

  • Mathematica
    divbleQ[m_, n_] := Mod[m, n] == 0; A052013 = {}; Do[p = Prime[n]; If[divbleQ[p + 1, n], AppendTo[A052013, p]], {n, 10!}]; A052013 (* Vladimir Joseph Stephan Orlovsky, Dec 08 2009 *)
    Select[Prime[Range[5000]], Divisible[# + 1, PrimePi[#]] &] (* Alonso del Arte, May 12 2017 *)
    Select[Table[{n,Prime[n]},{n,1056*10^4}],Mod[#[[2]],#[[1]]]==#[[1]]-1&][[All,2]] (* Harvey P. Dale, Oct 29 2022 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (Mod(p,primepi(p)) + 1 == 0, print1(p, ", "))) \\ Michel Marcus, Jan 09 2015
    
  • PARI
    list(lim)=my(v=List(), n, t); forprime(p=2, lim, t=(p+1)/n++; if(denominator(t)==1, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 18 2016

Formula

a(n) = prime(A045924(n)). - Michel Marcus, Jan 09 2015