cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052034 Primes such that the sum of the squares of their digits is also a prime.

Original entry on oeis.org

11, 23, 41, 61, 83, 101, 113, 131, 137, 173, 179, 191, 197, 199, 223, 229, 311, 313, 317, 331, 337, 353, 373, 379, 397, 401, 409, 443, 449, 461, 463, 467, 601, 641, 643, 647, 661, 683, 719, 733, 739, 773, 797, 829, 863, 883, 911, 919, 937, 971, 977, 991, 997, 1013
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

Primes p such that the sum of the squared digits of p is a prime q. For the values of q see A109181.

Examples

			p = 23 is in the sequence because q = 2^2 + 3^2 = 13 is a prime.
9431 -> 9^2 + 4^2 + 3^2 + 1^2 = 107 (which is prime).
		

References

  • Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, p. 89.
  • Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.

Crossrefs

Programs

  • Maple
    a:=proc(n) local nn, L: nn:=convert(n,base,10): L:=nops(nn): if isprime(n)= true and isprime(add(nn[j]^2,j=1..L))=true then n else end if end proc: seq(a(n),n=1..1000); # Emeric Deutsch, Jan 08 2008
  • Mathematica
    Select[Prime[Range[250]],PrimeQ[Total[IntegerDigits[#]^2]]&]  (* Harvey P. Dale, Dec 19 2010 *)
  • Python
    from sympy import isprime, primerange
    def ok(p): return isprime(sum(int(d)**2 for d in str(p)))
    def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
    print(aupto(1013)) # Michael S. Branicky, Nov 23 2021

Extensions

Edited by N. J. A. Sloane, Dec 15 2007 and again on Dec 05 2008 at the suggestion of Zak Seidov